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ABSTRACT A e

This document covers the derivation of a set of linearized
dynamic equations for use in missile stability snalyses. The
ecuations are presented in matrix form snd represent the traunsfer
function t'rom engine command sigunal to gyro output signals. The
derivetion includes the effects of propellant sloshing, elastic
deformetion of the vehicle structure, and the dynamict of gimballel
engineg., The effects of fixed thrusting engines and the effects
of inertia corrections to the bending data have also been considered.
The vehicle structure is taken as a multi-branched beam under the
influence of bending deflections, shear deflections, rutary inertis,

and axial accelerations.

The results are presented in terms of a set of generalized
coordinates representing rigid body motion, bending deflections,
engine deflections, and slosh mass deflections. The equations are
transformed into normal coordinates and the results are also

presented in terms of a set of orthogonal combined modes.

puthr
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INTHODUCTION

This documernt covers the derivation and programming of e set of
linearized dynam.c equations for use in missile slability analysis. The
work presented here is essentially an expansion of the equations and digital
computer program descrioed in Reference 1. Since the complete derivation is
presented in detail, thic document supersedes neference 1, Tne revision was
undertaken in order tu incrcase the flexibilicy of the computer program with
regard to the types of missiles to be studied and to incorporate changes in
tne nomenciature and data output found desirable as a result of the use of the

previous program. ‘[he major caanges incorporated are as [ollows:
() Leading dern devived fer pulti-brancned beams may be used.

(v) The output, including punched cards for the system matrix,
may oe obtained in either generalized ccordinates or normal

coordinates (comtined mode representation.)

(¢) A plotting cption is provided so that either the input or
the outprt modes may be machine plotted.

(d) Inertia corrections can be made at any of twenty toca*ions

on the missile independent of slosh tank locations

(e) Gyro slope data is punched in the system matrix and provision:

are made to mix the signals from two rate gyro locations.
(f) Input bending data need not be normelized to total missile mass.

(g) Tue ecuations and the program nave been arranged to accept a
massless engine for use with seccndary injection type thrust

vector control.

(h) In order to utilize the ability to reduce truncatioa crrors
with combined mode representation, the program has been arranged
so that higher freguency combined modes may be dropped from the
punched output.

(i) Changes may be made in bending data which has beeu irtroduced

into the program from column binary bending decks.

=
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(J) when studying the effects of variations in damping or performing
3 limi%t cycle study using non-linear damping it is necessary to
obtain output data for various values of damping. Since damping
has no effect on the input or output modes, and is only iutro-
duced during the calculations for the punched output, ar option
is provided to allow a number of output decks to be punched from
a single run. This option provices a series of output decks for

various values of damping with a minimum of machine time.

(k) An option is also provided to punch out the eigenvector or modal
matrix on cards for use in the root analysis program used in

limit cycle studies.

This document has been issued in two volumes. Volume I covers the
formulation of the dynamic equatiors and the system matrix. Volume II describes
the programming of the equations for solution by 7090 digital computers and con-
tains detailed instructions for the use of the program. Section I of Volume I
contains an introduction and a statement of the problem to be solved. In Sec-
tion II the dynamic equations and system matrix are formuiated in generalized
coordinates. These equaticns and system matrix are then “rensformed into normal

coordinates in Section III.

The development of the equations in this document iancludes all linear

terms consistent with the following assumptions:

(a) A1l physical parameters of the missile such as mass, inertis,
and thrust are considered constant. Although these parameters
actually vary slecvly witk time, such variations will have

negligible effect on the short time missile response and stability.

(b) Input bending modes are determined for free-free end conditions
with engine and sloshing mass rigidity attached and include the
effects of bending, shear deflections, rotary inertia and axial

accelerstion.

(¢) Aerodynamic forces normal to the missile axis are assumed to
be independent of the local structural bending slope and are
considered to vary linearly with the angle of attack developed
by the underformed elastic axis of the missiie.
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(d) Aerodynamic forces along the missile axis are assumed to b«

independent of local bending and angle of attack.,

(e) The dynamic equations are developed fcr motions in the missile
yaw plane, defined as a plane containing the missile velocity

~—

vector anl a peruycndicular to tne local vertical The trim
conditions on a, &, and & will be zero in this plane, The -~
equations are also applicable to Lhe pitch plane if the trimmed

ot 7 CThveae yaricpler nigy b ong Yooted o i 3 values

for a gravity wurn are r<riiv.b’e. These conditions are usually

appioached wi'h the approximate gravity turns employed in practice.

I-2 MISSILE STABILITY ’

At any instant ol Zlight time, a missile in its nowe 31 or trimmed
condition mey be considered = a system in dynemic equilibr. . All external
forces are steady forces in =zguilibrium with inertia forces .. accordance wiih «
' Alembert's principle, and *ie internal kinetic and poter* . . energies are —
constant., Under these condi..crs the misgile is an Mth ¢a: "2 of freedom closed
dynamic system and when displace:d cr perturbed from .%.. . : .nal or trimmed condi-
tion, the resulting motion with respe:: *o the tvime « ~dition will be diver-
gent for an unstable missile or will damp out v & . anie missile, A stable
missile must be stable for the slightest displacemesis from the equilibrium
position and a stability analysis is concerned with “he stable and unstable
tendencies of the system at the equilibrium position. Therefore, the analysis
mey te based upon the assumption of small displacements for which the effects of

second and higher order terms may be neglected.

In the absence of external driving forces the motion of the system
can be rerresented by M linearized homogeneous second order differential i,
equations in M independent variables. When exprecsed in LaPlace notation
these equations become M homogenecus lirear algebreic equations in the M
independent variables where the coefficients are linear combinatims of the

LaFlace operator, s, and 32. In metrix form these equations mey he written as a—

[R] {?’M} =0 I-2.1




841 4-60L6-TL00D

Fage b

where the M x M coefficient matrix [R]:s & funciion of s and is referred

to as the system matrix. The column matrix {QM} is a column of the independ-

ent generaiized coordinutes of the system, The system matrix [R] can be

written as
[¢]
where [A] » [B]

- {qz [4] + s (8] + [c]]

’ {C. are matrices of constants,

1‘202

The system of dynamic ejuations expressed in LaPlace notatior I-2.1

represents an eigenvalue probiem which has 2M eigenvalues or roots found by
equating the determinant of {R] to zero. The determinant of fR] is & zﬁth

~

degree polynomial in s and when equated to zero may be written as the product

of M gquadratics

Y
¥

The roo

4
{"i'(s +AiS+Bi)=O

ts may be real or complex.

I'Zo3

However, all complex roots &jppear

in conjugate pairs and a plot of the roots in the s plane is syrmetricul about

the resl axis,

eigenvector havi

of the colir, matrix {QF} which satisfies equation I-2.1 when the corresponding

Corresponding to each eigenvalue or root, there is an acsociated

ng M constent components. These components are the elements

value of s is cubstituted in the [R] matrix. The ratios of the components of

the associated eigenvector then represents t.e ratios of the generalized vari-

ables present in the motion for that particular root.

The system hes 2M roots each with an associai2d eigenvector to

represent the relative motion associated with that roou.

previously, the system has M degrees of freedom and, therefore, M natural modes

However, as stated

of motion which are orthogonal to each other or completely uncoupled. Each of

these orthogonal or uncoupled modes of motion can be represented dynamically by

a single degree of freedom system &as shown in F.gure I-1,

N\
N\

\

Cxmt ey m Ema |
T
| S )

Figure No. I-1
Single Degree of Freedom SyAatem
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wheire
z = normal coordinate Iir moda
m = normalized mass for rode
¥ = modal spring constant = a)cu:
w = wodal frequency
d = mndal damping
mz + dz + kz = O
(ms?*ds-yk)z:.o '
[.2
52 S + a_ X I-2.3
- 2m - h 2 m '
m
£=04+) I-2.4
then r
z=e" " l.Ae’\t + Be -Kt] I-2.5

In the case of under-damped modes where the damping ratio is less than unity
= Jjw.

Substituting for A reduces eguation I-2.5 to

ot
e

z = [a. cos wt - b sin ast] I1-2.6

Therefore. =ach complex pair of roots produces a single mode of oscillatory
motiun defined in terms of the generalized variables by the components of

the associated ~igenvector. It should be noted that the negative frequency
represented by -jw results from the mathematical possibility of negative
rotation of the amplitude vector generating sinusoidal functions. Since the
components of the eigenvectors are complex numbers showing voth amplitude and
phase relationships between the g~neralized variables, the eigenvectors corre- —
sponding to & pair of conjugate routs will be identical except that the signs
of the imaginary parts will h2 opposite. When the eigenvector is used to study
the motion reaulting from a pair of complex roots the eigenvector correspounding
to poritive frequency should be used.
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In *+he case of over-damped modes where the damping ratio is

grester than unity A is real, and equation I-2.5 can be written

1
(a+B) cosh At + (A-B) sinh,\tl 1-2.7

Therefore, each over-damped mode represents the wotion of two real
roots. The relative magnitudes of the generalized variables in the
resultant motion can be described by a linear combination of the
eigenvectors corresponding to the two roots. The only other type of
mode which may occur is a damped mode for which the modal spring k is

zero.
Then

A=o
and s =0

s = 290

equation I-2.5 reduces to

z = Ae a7t + B 1-2.8

Therefore, each mode of this type represents the motion corresponding

to two roots one of which is at the origin. The motion corresponding

to the root at the origin is simply B equal to a constant, and since

the motion has been taken as the motion with respect to the nominal or
trimmed condition, this constant must be zero. It may be seen that in
order for a root to appear at the origin, ome of the eguations of motion
must contain s in all terms such that s may be divided out of the equation.
Since the motion resulting from these roots is zero, this operation is
Justified, and the M equations of mction need not all be second degree

in s in which case the number of roots may be less than 2M. However, the
number of orthogonal natural modes of motion will always be M.

Any free or driven motion of tae system must be a linear combina-
tion of the M natural modes of motion, In any such combination representing
the free motion of the system, the stable natural modes of motion will damp
out in accordance with their damping ratios, reducing the motion to a
combination of any unstable modes present. Therefore, a stability analysis
of the system for any form of excitation reduces to the study of the stability




8i1k4-6046-TUC00
Page 7

of esch of the M natural modes of motion. A simple stable cr unstable
type of analysis for an existing missile could be performed by formuiating
the dynamic equations, obtaining the roots of the system matrix and noting
the root locations in the s plane. However, such ar analysis does not lend
itself to the determination of stability margine, the study of system
modifications, the design of new systems, or limit cycle studies. A
considerable reduction in computer expense together with a greater in-
~igbt into the physical aspects of the problem will result if the analysis
is performed in a number of steps. In general these steps consist of the
following:

(a) The free-free unccupled bending modes and the rigid tank
fluid sloshing parameters are cotained from separate computer
progrsams,

(v) The bending ;nd slosh datz together with trajectory and
engine data are intrcduced into a set of homogeneous
dynamic egquations represeunting the missile dynamics.
These equations in LaPlace notation are expressed &s a
coefficlent matrix where the coefficients are functions

of the LaFlace operator, s.

(¢) The coefficient matrix expressing m'ssile dynamics is then
expanded to the system matrix by the addition of the auto-
pilot and guidance parameters,

(4) The system matrix is used to perform a number of different types
of stability studies., It mey be used tc obtain the system
roots ¢nd associated eigenvectors which in turn are used to
iadicate the stability of each mode of motica or the amplitudes
of iimit cycles. The system matrix is also used to obtain the
poles and zeros of the npen loop transfer function of the
system. These data are in turn used to obteain open loop
frequency response generally used in bending and rigid body
studies or they may be used to obtain closed loop root loci,

generally ugsed in fluid slcsh studiss,

Jﬂ\
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The eguations formulated in Volume I of this aocument and the
digital computer program descrioed in Voluwz II are used in performing
the work outline? in step {b). The input data consists cf the bending,
slosh, trajectory, and engine data, vhile the output is the missile

dynamics coe®ficient matrix in the form of punched cards.

I-3 SYSTEM MATRTIX

A general block diagram for a missile cortrol system is shown
in Figure I-2. As noted in Section I-2, the system has M degrees of
freedom and will rave M natural modes of motion when Gc is zero. Since
the missile mass is considered as a distributed mass in the calculation
of bending modes there are an infinite number of elastic modes. Likevise,
integration over the totsl fiuid to ootain the equivalent slosh parameters
produces an infinits number of fluid modes for each fluid tank. It is
therefore necersary to limit the number of bending and slosh modes which
may be incorporated into the analysis in order that M remain a finite
pumber. The effects of limiting the number of bending and slosh modes
considered is diecussed in Secticn II and it is assumed here that M has

teen reduced to a finite number.

In Section I-2 it was assumed the dynamics of the system was
expressed by M sccond order linear differential equations in M generalized
independent variasbles. Using LaPlace notation, these equations become M
=econd. degree linear algebraic equations in the same variables where the

coefficients were linear functions of s and 52.

The M x M square coefficien. matrix for these equations was defired
as the system mavrix. However, the dynamic equations and the system matrix
may be expanded by the addition of a number of dependent variables and &n
equal number of auxiliary equations. Therefore, the system matrix for the
M degree of freedom system may be a square matrix of any order greater than
M. The total number of roo%s of the system will remain 2M less eny roots
at the origiz, ond the cystem will have M orthogonal natural modes of motion

indepenient of the order of the system matrix.
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That portion of the system matrix representing the equations
formulated in this document and referred to as the missile dynamics
matrix in Section I-2, corresponds to the transfer functions between
the gyro angles Qp and QR and the engine command signal, SC (Figure I-2).
This natrix, which appears in the program output both in printed form and
as a punched deck of cards, is not a square matrix. The number of columns
will be one greater than the number of rows, therefore, the matrix repre-
sents the coefficients of a series of homogeneous equations for which the
number of variaoics is one greater than the numoer of equations. The
addition of an equation relating the engine command signal to the gyro
outputs will produce the square system matrix from which the closed .ioop

roots may be detcrmined.

In practice the commend signal, 6C. is related to the gyroc outputs
by tne addition of a number of auxiliary equations and dependent variables.
The final equation relates the output variaole to the input variable therebpy

closing vhe s100p producing the square system matrix.

In order to determine th. open lLoop characteristics of the system
with the loop opened at point such as F inu Figure I-2, the dependent variable
9; is introduced together with an auxiliary equation relating QF to O;. This
auxiliary ejuation should always be represented by the last row in the system
matrix. The non-square matrix obtained by omitting the last row of the sys-

ter matrix then represents the transfer function 9F which is defined as the

*

system transfer function. OF

*
The auxiliary equation relating QF to ©, may be written

F
.+ b o, =0 in3.1
fJ.F+ F o= 1~3.

\
theretfore, the last row of the system matrix will have a in the column

'K'
representing ©_, and b in the ~olumn representing QF. Substituting -1

F

*
for either a or b and +1 for the other will make QF egual to QF and the

solution of the system matrix will give the closed loop roots and the

corresponding modes of motion for the system.
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Letting b equal unity and a equal zero reduces equation I-3.1
to

and OF is arbitrary., The resulting motion when the input is zero must
be the natural modes of the system, therefore, sclutions of the system
matrix will give the open loop polees and the corresponding modes of

motion.

Since the system also has M degrees of frsedom for the open loop
condition there will be 2M roots and M natural modes of motion.

Letting a equal unity and b equal zero reduces equation I-3.1 to

9F=O
¥*
and OF is arbitrary. The so’.ution of the system matrix under these conditions
will give the roots and modes of motion required to produce zero output for an

arbitrary input. These roots are defined as the open loop zercs of the system.

The system transfer function may be written

T71 (s -
—= (k) =t ((: - :i)T I-3.2
o o] J

vhere (KR)N = nominal gain of system

l' (s - zi)= product of (s - zi)
II (s - pd)s product of (s - pJ)
2, = open loop zero

pJ a open loop pole

For the closed loop condition the tramnsfer function is equal to unity
and equation I-3.2 beconmes

Tr(a - p.j)’ (KR)N_H-(B - zi) I-3.3

e 233
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Letting the system gain become a variable, then for the open loop condition
KR is zero and I-3.3 becomes

TTts -2y =0

ard the open loop poles are the system roots. However, if KR becomes

infinite equation I-~3.3 becomes

_[_T(s - zi) =0

and it may be seen that the open loop zeros are also the roots of *the closed
loop system when the system gain is infinite, As the system gain is varied
from zero to infinity the closed loop roots will move from the open loop
poles to the open loop zeros passing through the nominal closed luop roots
when the gain is equal to the nominal gain. As the gain sapproaches infinity
in an Mth degrees of freedom system, the system may have less than M degrees
of freedom and less than M natural modes of motion. In this case the roots
must approach zeros which are at infinity. Solution of the system matrix
for tuz zeros of the system will produce only finite zeros and the difference
vetween the number of zeros found and 2M represents the number of zeros at
infinity.
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II-1 COORDINATE SYSTEM

It is assumed that at some time, t, the missile in its nominal or
trimmed condition flies along an inertial axis, H, such that the missile piich
plane contains the local vertical and the missile yaw plane makes an angle 71
with the local vertical, see figure II-1.1. The ceunter of gravity of the missile
is displaced a distance, QH’ along the H axis measured from a second inertial
axis, L, in the yaw plane perpendicular to the H axis.

__—PTTCH PLANE

AXTIS

cg

L AXIS

YAW PLANE

g cosy /

t
FIGURE II - 1.1 i
{
|

-
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It is further assumed that the missile is displaced or perturbed in the yaw
plane and acts as a system of mass zlements, om, each of which has relative
motion with respect to the total system center of gravity. The dicplacement

in the yaw plane of the total system center of gravity at time, t, is defined

by the coordinates QH and QI measured along the H and L axes, see figures II-1.Z.

L P /{

b 2 am _-"_A_
p
y . N
S

g cosy ™%

YAW PLANE
FIGURE II - 1.2

The R and P axes are non-rotating in inertial space and are translating in the
yaw plane with the total system c.;. at & velocity Vcg making an angle {1 with
the R and H axes. The R ard P axes remain parallel to the H and L axes. The

yav plane coordinates of the mass element dm in inertial space are H, L, and A

where A = rotational displacement of dm with reepect to R
H = Q,H + R
L= QL + P

The component Sf the acceleration of gravity in the yaw plane is g cos 71
directed along the negative H axis.

When the missile is in its nominal or trimmed condition, QL, n,
and A are zero, R and P are constant, and QE is increasing along the H axis.
The dynamics of the system is such that the magnitudes of these coordinates
have oscillatory components when the missile has been displaced or perturbed.
The oscillatory components are damped in & stable system and divergent in an
wnstable system.
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The motion of the mass elements, dm, with respect toc the system C.G.
is defined with respect to & third set of coordinate axes defined in the yaw
plane such that the origin is at the center of gravity and the axes are angu-
larly displaced by an angle 6 with respect to the R and P axes, see figure
I1-1.3.

g T

g Ccosy

FIGURE IT - 1.3

The displacements of the element of me&ss dm with respect to the i - j
axes are x, y and ip

{1, 6, and @& are taken as positive for rotation about the - k axes
vhile A and Ware taken as positive for rotation about the + k axis. It should
be noted that no resirictions have been placed upon the selection of ©, which is
arbitrary. The only restriction placed upon the I - J coordinate system is that
the origin he at the total c.g. of the system. ‘fhis restriction requires that

) j xdm = O f yim = O II-1.1

™ ™

vhere [ represents integration over the total mass or total missile.
™
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$o

From equation II-1.

-

! % dm = O = total linear momentum along the 1 axis resulting
JTM from motion with respect to c.g.

( ¥y dm = O = “otal linear momentum along the J axis resulting

™ from motion with respect to c.g.

II-lcz
‘e - R

j dm = C = net inertia force in the i direction rssulting ‘

™ from motion with respect to c.g.

Jf y dm = O = net inertia force in the 3 direction resviting —
™ from motion with respect to c.g.

The angular momentum of the mass element dm about the k axis due to mo%ion

with respect to the c.g. is

al, = (x - & + r? Y) an II-1.3

whers r = radius of gyration of the element of mass, dm.

Froa the geometry of the system

R=xcos @ +ysin @
P=ycos 8 ~xsin e

A= LZ/-O =

n=g+ao II-llu

H=Qﬂ+xcose+ysin9

L

QL+ycosO-xsinO
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Plncing the origin of the I - J coordinate system at tke c.g. makes the net
linear momentwe in any direction, resulting from motion with respect to the

c.g., equal to zero. Therefore, the sum of the external forces in any direction

must equal the rate of change of linear momentum of the total mass located at
the total c.g. This i: effect uncouples the motion of the center of gravity
from the motion of the mass elements with respect to the c.g.

Tikewise the sum of the external moments about the c.g. equals the
time rate of change of angular momertum about the 2.g. and it would be desira-
ble to define the angle © such that the rotation of the i - j axes is a func-
tion of the external torques only and independent of the motion of the mass
elements with respect to the c.g.

Letting ?/}T = angular momentum of totrl .mss about c.g.
aMy, = "R - RP)an + r° Adn

substituting from equations II-1.4

2, 1t )dm

Ay = Gx - &y + 2°P)am - 6(° + 3
W)T = j (7x - xy + rzlp)dm -0 [ (x‘+y2+r2)dm
J
™ ™

The first integral is the angular momentum of the total mass resulting from
motion with respect to the c.g. and equals mxy from equation II-1.3. The
second integral is the total mass moment of inertia about the c.g. which 1s
defined a&s 1.

777T = mxy - 16 11-1.5
Torque = 7)5,1, = i), - £ (19) I1-1.6

Equation II-1.6 shows that it is desirable to define © such that

mxy = 0 II"l o7
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9 will then always take a value such that
' = constant I1-1.8
ﬁ’xy
and
Y (Externai torques) = - g—t (18) II-1.9

Tt will be noted that the rotation of the I - J axes, 0, is still coupled to
the motion with respect to the c.g. by the term IO which results from the non-
linear centrifugal and coriolis forces. However, for first order linearizaiion,
g—t(Ié) = 16 and the motions are uncoupled. Furthermore, for a linear oscil-
latory systenm ’/f?w must be a sine function which can only have the constant
value of zero.

The displacemen: of the total system, can be defined by the displace-
ment of the c¢.g., QH and Q'L’ the rotation of the 1 - J coordinate system, 9,
and the displacement of the system with respect to the i - j axes. The motion
of the system with respect to the i - J axes will have N degrees of freedom and
can be described by N generalized coordinates Qh The coordinates x, y, andfp
for each element of mass can then be defined in terms of the Qn's and the con-
straintes of the system such that

X

x(Q,'s)

y = ¥(q,'s) 11-1.10

AR ICR)

vhere equations II1-1.10 need not be linear.

The total system then has N + 3 degrees of freedom and can be des-
cribed by the generalized coordinates QH’ Q’L’ 0, and N coordinates qn It hes
already been indirectly shown that the dynamic equations associated with the
QH’ QL and @ coordinstes are

Z PH = mH = sun of external force along H axes
)3 P, = Ml = oun of external forces along L axes

- %"t' {18) = sum of external moments about c.g.



8414 -6046-TUO00
Page 19

It will also be snown that the motion of the system with respect
to the 1 - J axes can be defined in terms of N normal coordinates q, - The
dynamic equations derived in terms of the generalized coordinates Qn will then
be transformed in terms of the normal coordinates q, -

The displacements of the mass element dm in inertial space are given
by equation II-1.4 as

H=Qﬂ+xcosO+ysin0

.‘.:QL+ycosO-xsin0

A= J-o

The coordinates of the I - j axes are Qp @, and O which are con-
sidered as generalized coordinate and are oniy a function of time. The
coordinates of the mass element dm with respect to the i - j axes are x, y,
and @ . The motion with respect t> the i - 3 axes has not been defined in
terms of the constraints of the system. Therefore, x, y, and ’I/cannot be con-
sidered generalized coordinates and the gerneral dynamic relsti'onships discussed
in this section will apply to an)y system of mass elements.

II-2.1 VELOCITIES

Differentiating equations II-1.k4 with respect to time

ﬁ:éﬁ+:’:cose-xéain0+yécosg

L. . . II-2.1
L=QL+icosQ-szin0-:':ein9-xOcoaG
U=6+a
o
Ao

The total velocity of the mass element, dm with respect to the fixed
H and L axis, expressed as components along the rotating I - J axes is

v=1 [ﬁcoso-i.sino] +3 [flsin9+i.cose]

[ L
substituting for Hand L . )
v=1 [(éﬁcosc-éLsine)s-z'c+3réJ+3 |L(§Ha1n0+éLcosO)

+¥ - xé] II-2.2
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since ch is the velocity of c.g. at time ¢
. )

Q =V cossl=V__cos (8 + @)

cg cg o

. ~ I1-2.3
Q ==V sinii=V__sin (0 + @)
cg cg [}

Therefore
- . 1 - r *
= < X - & +y - -2,
' ilvcgcosu°+x+9yj+,j[chsino-by OxJ 11-2.4

I1-2.2 KINETIC ENERGY

The kinetic energy of the mass element dm is

1 2 1.2 0t ar2
ar =5 Vi am+ 3 7° (Y- 6)° an
substituting from equations II-2.2 and using II-1l.2 —

7=%(d§+ .2) }I’ dm+%62 J (x2+y2+r )d.m+ {(x +'?+r’¥[ )dm
“T™ T™

-0 j (}"x-v':yq-?.rz) dm

™
1,2  :20 1 _s2 .
r=é—M(QH+QL)+§O+‘rw-G7nxy
1 1 . )
r:EMvig«»ﬁ-m + oy - My I1-2.5

where Txy is the kinetic energy of the system due to motion with respect to the

i - j axes and is only a fanction of the Qn's and their derivatives. By equation
I1-1..8, ’)r) ey is a constent. The generalized momentum associated with each gener-
alized cnordinate is then

T .

= =R '
38, R

T _MQ 11-2.6

3, L

3 =10 - M



dinate is

as a result of non-linearities are

I1-2.3

T

L
R, Ry

8l14-6046-TUOOO
Page 21

I1-2.6

The generalized inertia force associsted with each generalized coor-

then

= <§-§;=mn

d ,07 d /.
d 07 d
® G =

I1-2.7

The generalized force associated with each generalized coordinate

g;-;o

)

-b—;;=o

9% =0

5o

3 _duy
QT o,

For a linear system the last equation of II-2.8 is also zero.

POTENTIAL ENERGY AND DISSIPATICN FUNRCTION

II-z 08

The potential energy of the system will be divided into two types,
the potent.al energy resulting from the positions of the mass elements in the
gravity field, and the internal potential energy stored in elsstic deformation
of the structure.

dVG = Hg cosy dm
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substituting from II-1.4 and using II-1.2
&G =M QH g cosy 11-2.9

The potential energy due to gravity is taken as zero at the origin of
the inertial axes L-H and the acceleration of grevity is assumed constant for

all mass elements.

It is assumed that the internal potential energy VI is a function of
the x's and y's corresvonding to the positions of the mass elemeats with res-
pect to the 1 - J axes and is not & function o' the generalized coordinates Qs

Q

I and ©.

= ! -
V= VI(Qn 8) II-2.10

The rate at which energy is dissipated in the system is defined as
BFD. If it is assumed that all of the energy dissipated results from relative
motion of the mass elements with respect to the i - jJ axes, the dissipation

function, FD, is then independent of the generalized coordinates QH, QL and 3.

- i -
Fp = FD(Qn,a) 11-2.11

II-2.4 THE LAGRANGE EQUAT IONS

The general form of Iagrange's equations of motions are

a oy ot g o1 o' i
@hy "W TTIAT Iy "R 2.2

where

=V oHp 3l
Q L1> PH'S&*PLW

= Component of external force P along H

oo
noo

Component of external force P along L

P=IP +JFP II-2.13
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then
P, =P cos @ +P sin ©
H X y
PL = Py cos @ - Px sin ©
and
P.= 5 |{P cos &+ P sin 0) éfz + (P_cos (P_cos © - P_sino) éfg
QR F % y 0Q y y x 39
The point of application of P is HP and LP cefined by equation
II-1.4 as
HP = QH + X, cos e - Yp sin ©
LP = QL + ¥yp cos 0 - *p sin @
then
P
X%
o,
A
J
e
4
\
9;?- =1 II-2.1%
oML
3KP
55— = ~%Xp sin 0 + ¥p cos o
okp
55— = ¥p sin 0 - xP cos ©
ofp )*p Ve

=== _ COS © ==— + 8in 6 ——

0% % %

Mp :Yp *p
—rm— = ) - 8in ©
T cos 55; s 55;




Poy = €050 );Px
Py = coso gpy
P =

2

5
P

2

PQn= %[P,c aQn
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+ sind )P

P Y
- sin® :P II-2.15

b'd

P
- nyp} = - moment of external forces about c.g.
o, , O ]

y 29

From equations II-2.7, II-2.8, II-2.9, II-2.10, II-2.11 and II-2.15

the Lagrange equations of

MQ,H + Mg cosy

)

a .
—x (19)

motion for coordinates Q‘H’ Q’L’ €, and Qn are

coso XP + sin® ZP
P ¥ P Y

cose gPy - sin@ %Px

- Z [Pny - nyP]

P

dt aQn

d 2‘)(1 _BTxy V1 2FD _ [ pre
5y 09, T RICE Qy]

P

R

QH and QL are the accelerations of the total ceater of gravity in the

direction of the nominal flight path and normal to the nomiral flight

path. From equations II -

.o

Q‘H = cos@ g

also by differentiating equations II - 2.3

.

2.16
Px P
+ sin® Z-—Ml - g cOosYy I1-2.17
P
Q = - Vcs(o + ao) sin(@ + ao) + ch cos (0 + ao)
: II-2.18

Q = - vcs(e + ao) cos(0 + ao) - ch sin (0 + ao)
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The second equation of II-2.18 is the so called normal force equation

end the first will oe referred to as the axial force equation.

equations of motion can now oe writven

Y = - ch(9+ao) sin (Mo) + chcos(gﬁxo)

H

P M

Q’L = - ch(éﬂ;o) cos (Gfao) - \./cgsin(0+ao) .

i
5 (16) = - [Pyxp - nyP]

d aTx}_r_ 2%x ) I & D Z[P axP
— (&2) - -——I x L=
29 o " 2 p

ciing!

27p.
at ‘o = Ty 1)

L

P
coso Z -yM— - sin@ Z
P

P
X

M

T P
cor9 Z__x_ + sino Z—%— - g cosr
P

11-2.19

I1-2.20

I1-2.21

I1-2.22

From “he fact that the motion of the center of gravity is indevendent

of the motion with respect to the c.g., and the definition of ©, equations
II-2.19, 1I1-2.20, and II-2.21 could have been simply derived from Newton's
equations. Also equaticn II-2.22 is Lagrange's equations for the motion

of the total mass with respect to the I - J axes and is indeperdent of Q‘H’

Q,Land 0.

The acceleration of the center of mass can also be expressed es

components along the I and 3 axes, a and ay where

= Q’H coso -~ Q1 sin@
cos® + sin@
QL [

e

substituting for QH anw Q’L equations II-2.19 and II-2.20 become

= . cos@ gcosy

M

a --vcg(mon)sinczo + chcosao =

™)

P

. . e _ B
8, VCS(C.MzQ)c:osozo chsinao )X £ - sind geosy

2]

It should be noted that a linear system and small angles have nct been

assumed. The only restrictions placed on the system are that the origin

of the { - J axes be at the total c.g. and-);?xy = constant.

II-2.23

II-2.2k

II-2.25
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TI-. TSI COLEIVUGATION

=

n Section II-¢ oenerar dynamic equations were derived for a
system or mass elements naving reiative motion with respect to a set of
rotating oody ases, 1 - 3. The system was assumed to have N degrees of
I'reedom descrioed oy N wenerailzed coordinates Qn, In tnis sec.ion ine
YILAL vl LAss elements wiia e deiined in terms ol a missile confliguration

ana tae N generasized coordinates wiii oe estaoiisned.

Tne missiie vody is assumed to consist ol a relative siender
riexivie oody incorpordting R if'iuid tanks wnich may oe oniy partially
tilied. A number or tnrusting engines are assumed to be attached to
the missiite pody such that they may or may not oe rotated with respect
to the oody center line. In addition provisions are provided to make
inertia corrections at various points on the missile body. These inertia
corrections in effect consist of thz2 addition of a quancity of mastter which

has no mass out has a mass moment of inertia AI.

II-3.1 SLOSH REPRESENTATION

Translational or rotational motion of each partislly filled fluid
tank will result in relative motioa between the fluid and tank, thus producing
dynamic forces or the tank. The mo.ing fluid represents an infinite degree
of freedom system having an infinite number of modes of motion. It has been
shown (Relerences 2, 3, and 4) thet equivalent tank loads for each fluid mode
will result trom a spring mass analogy. The analogy consists of placing a cap
or vulknead at the ifree fluid surtace to confine the fluid and prevent slosaning
and attacnhing a portion of the fluid mass to the structure by a simple spring.
BZquations ror the calcuiation of the equivalent sloshing mass, natural frequency
of the spring mass comoination, and the required attach station on the fluid
tank are derived in Reference 4 for tanks of arvitrary shape. The equaticns
for tanks with axial symmetry hav2 been programmed for computer computation.

A description of this program and instructions for its use are contained in

Reference 5. Results ootained from the slosh program show that the slosh
masses associated with fluid modes above the first mode are smell and in

general these modes may be neglected.
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For the cotcuracion of Luae wass woment of inertia of the missile
aoout its center of gra.ity and the computaiion of vending modes, it is
recessary to consider une moment of inertia of tne fluid in tne capped tank.
The equation for finding tne mass moment of inertia aoout the fluid c.g. for

a 'juid in a c¢ylindrical tank is derived in R ference 3. These data are pre-

-

sented a< a correction ractor, to ce applied to thc moment of inertia

X
I

inat souid result il the rluid were frozen as a solid. This correclion factor

K, has been piotted against “ank aspect ratio (length divided oy diametecr)in

figure II-3.1. The frozen or solid inertia of a fluid mass me in a cylindrical

tank of radius RT and lengtn LT is

Tooria =™ |3~ * T2 11-3.1

Z ?
Ry L J

The free fluid inertia If is then

Ip=sp I 0o 1I-3.2

The mass moment of inertia that results when the fi-.r1 is
considered as a filament concentrated along the missile cente: line for
a distancefis given by

Z

Ipip = mp 93 I1-3.3

When the missile inertia or bending modes are based upon a filament of

tluid, the correction factor tha+ must be applied at the fluid cg is

— - T-
Al = Ip - Ipip TI-3.4

where Al may oc posiltive or negative,

It showid be noted that the slosh mass amplitude ;:3'j used in
tnis analysis is the amplitude of motion of the equivalent slosh mass of
the spring mass anaiogy. p‘j does not represent tne slosh amplitude of the
fluid in the tank. The fiuid amplitude is obtained by applying a correction
ractor to p . This correction is ootained from the output data of the

sloshing program.
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I1 -5.2  3ZHDIN .10D5

The Jree-rreoe riexicae missile oody moving in the yaw piane
represents an injuite Gegree of rreedom system consisting oi' . ree zero
frequency or rigid oody wodes and en inrinite numoer of elastic or oending
modes. However, in an anaiysis of this type onliy a rinite numoer, %, or
tne modes can 22 ccuziderec and it is assumed tnat tae elastic deformation
R R ATt Ve v an danee T ned a2 fanne rmorainering ~1 the #ipean T ~»adin-
modes in order or increasing modai freguency. Fxperience nas snown that
ihe system ¢ ing studied is reiatively ioose.y coupled, that is, the re-
suiting system natural rreguencies are neas ine input oending, siosh, and
engine frequencies and tae resuiting modes consist primarily of the corre-
sponding oendiag, sliosh, and engine motions. Therefore, if the Ttn oending
frequency is well apove tae highest slosh and engire input. frequency, the
driving functions for the higher modes above the Tth mode will pe small and
the truncation errors for aii out the nighest mode, Tth, should be negligible
ard the aoo.e assumption is comsidered justified. The output data for the
Tth mode shnousd never ve uced in a staoility analysis. The input data snould
alwayé include at iesst one mode above tne nighest mode to ve studied.

All etastic deflections are tasken with respect to the undeformed
elastic axis (UEA). The UEA is defined as the body center line in the
aosence of elastic deformation and is assumed to oe a straight line. The
center of mass for every beam element for all beam branches must lie on the
UEA in the absence of elastic deformation. Sending mode calculations are made
assuming that all mass elements are distriouted along the ceater line witu radii

of gyration, r. The location of a poiut on the body is defined as X measured

forward along tne UEA from the totsl system center of gravity, see figure II-3.2.

For the purpose of this analysis it is assumed that the bending modes have been
calculated for a multi-branched beam taking into account, shear deflection,

“&\ _UEA C.G. — ,u o FWD
—

FIGURE II - 3.2
Totel Deflection Due to Bending and Shear

msscamnte -
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rotary inertia, and axial acceleration, and that all engine and siosh masses

are rigidiy attacned to the missiie. The trans'ationai det'lection of a vean

elemer. at i perpendicujar vo the Ut is Liken as u an? tne total slope of

Live veam center iine at )Ln witn respect to the Udh is u . Ihe votar si0pe w

is the sum of the slope due to pending deformation and the slope due to snear

deformation. The bending slope is defined as)/sfand is tne rotation of the beam

element at X, since shear deformation produces no rotation. The translaticnal

deflection in the direction of the UEA is neglected. The deflection u and slopes ;
u' and)/rat any point X, &re defined oy the fullowing equations:

u = §¢1 bi

u's= )i:¢i b, I1I-3.6

W= ;li o

where

t
;zii = deflection of the 1 " vending mode at X

]
¢i = t~tal slope of the e vending mode at X

+
,\ i = bending slope of the i'h bending mode at x

b, = ith bending coordinate

rl
4

€. — b . UEA

_/
\,F 5 ]

FIGURE II - 3.3

Bending Deflection Due 1th Mode

PR T
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The oending deilection due to ine 'Lth mode is shown in figure II-3.3.
For multi-branched beams ¢i’ ¢i and ;{i will have values for each ranch

present at xh. The normalized wass for the ith mode is given by

2, .22
f(¢1 + 17 Afldm = M 11-3.7
™

where the integration is the sum of the integrals carried out over eech
oranch of the ream. It is desirable to normalize each mode such that
M, is the total missile mass. Since the mode shapes normalized to mass

-

M, can be normalized to the mass M by multiplying ¢1, ;\i and ¢i by WJki

were
k, = — _ 11-3.8

it will be assumed that all bending modes are normalized to total missile

For the 1" mode shape shown in Figure II-3.3 the values of @, ¢;
and \ are functions of xh.only. ¢1 is the deflecti?n vhen the bending
coordinate is unity, and is non dimensicnal. Since ¢1 and ’li are the
slopes when the bending coordinate is unity they have the dimension of
1/ft. The bending coordinate b, is then defined at the value of x where ¢i
is unity for a mcde shape normalized to total mass. The ith pending mode
represents the maximum deflections at each point along the beam tor sinusoidal
motion since bi is a sine function of time t and the modal frequency. There-
fore, for the input mode shown in figure II-3.3 the deflection and slopes
couid be multiplied by -1 and a new input mode slope would be defined which
would shift the phase of the final bi by 180 degrees. Eitaer input mode can
be used, however, in order to be consistent a positive input mode is defined
as that phase of the mode which results in a positive deflection at the aft end

of the missile.
Since the input modes are orthogonal

f'm (¢,9, + ra/\i,\t)du =0 tfi II-3.9

also since the bending modes produce no translation of the n~.g. and no
rotation of the UEA the linear momentum of the total system and the angular
momentwn about the c.g. must be zero. Therefore
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f ¢1 dm = O
™
2 II-3.10
[ (fyx, + x7 ) )am = 0 :
™
ard i udm = 0
j ™

‘[&m! (uxh + riJV)dm =0

As previously noted, this analysis assumes that the bpending
modes have been calculated for a multi-branched beam teking into account,
shear deflection, rotary inertia, and axial &cceleration, and that all
engines and slosh masges are rigidly attached to the beam. If the effects
of the bear column loads due to axial acceleration are to be neglected, no
changes in the input data are required. If the effects of shear deformation are
neglected in the bending modes, the total slope is made equal to the bending
slope. If the inertial emergy stored in the beam elements due to rotation are
to be neglected, the radius of gyration of each beam element becomes zero in
all equations. However, the engine input data and the dynemic equations are
based upon & mass moment of inertia about the gimbal point, IGe’ for each
gimballed engine and the rotary inertia of these engines cannot be neglected.
The moment of inertia of the engine about its gimbal point is

_ 2 Jf 2
IGe = Nhe ILE + | r da,
th
where MGe = mass of e engine

Joe

Therefore, when using bernding data which neglects the effects of rotary

distance from gimbal to c¢.g. of eth engine

inertia, it is necessary to introduce an inertia correction AIe at each
gimballed engine c.g. such that

I

'I }.



o 2= 3 32;5}“1" Xy by o

&

8414-6046-TUO0O
Fage 33

It is again noted that the engines and slosh masses are assumed to be

rigidly attached to the beam when the bending mode are determined. It

is important that the engine mass distribution be such that the static
moment of the mass about the engine gimbal point be equal to Mﬁe'IGe used

as gimballed engine input data; and in aadition each slosh mass must appear
in the mass distribution as & concentrated mass at the spring mass attach
point., Any other distribution of these masses will introduce errors in

the analysis the magnitudes of which are a function of the effect of the dis-
tribution on the modal deflections and slopes at the attach points.

II-3.3 ENGINES

Two types of thrusting engines are consideied, fixed engines,
and gimballed engines. Fixed engines are those engines which are fixed
or locked to the missile such that the thrust vector is always tangent
to the body center line at the point of attachment. These engines do not
produce modes of oscillation but do provide thrust forces which drive
other modes and must therefore be treaved separately from the gimballed
engines each of which does produce an additional mode of oscillation.
The eth gimballed engine is coasidered free to iotate about its gimbal
point such that the engine center line makes an angle Se with the pbody center
line. It should be noted that a gimballed engine which is locked during
some portion of flight time by locking the engine actuator or by making the
command signal zero, must be considered gimballed at all times of flight
since engine angles will result from the flexibility of the actuating
mechanism. Although only fixed and gimballed engines are considered in
the derivetion of the dynamic equations, a third type of engine is of
importance. For secondary injection, jet vane or jetavator thrust vector
control systems the thrust vector is deflected through an angie but the
engine mass remains fixed to the missile center line. This type of engine
is essentially a fixed engine with controlled thrust deflections or a mess-
less gimballed engine engine. The engine does not prcduce & mode of
oscillation but is the controlled driving force for all other modes.




g
.

Py

R VAN SO N

AR T

WIQOINT LN IR . I (R L

LN TR AN TSI M - R T

AL i o N

s

8414 -6046-TUOOO
Page 3k

No difficuities are encountered when a gimballed engine mass and inertia
of zero are introduced into the equations derived in this section. However,
when using the combined mode representation covered in section III, a mass-
less engine produces & mass matrix which is not positive and definite and
which will be rejected by the eigenvalue subroutine used. A program sub-

routine provided to handle this case is discussed in Volume II.

II-3.4 MASS MOMENT OF INEKTIA

In the introduction to this section it was noted that provisions
are included to make inertia corrections at various pointe along the missile.
These corrections are introduced primarily to compensate for the fluid
inertia in the propellant tanks as discussed in section II-3.1. Equation
II-3.5 gives the inertia correction that must be applied at the fluid
center of gravity when the bending modes are based upon the fluid mass
distributed along the missile center line. For the general type of bending
data normally used, rotating inertia is taken in account and the fluid
inertia correction can best be introduced in the inertia distribution, in
which case no inertia corrections are required in the dynamic equations. 1In
the case of oending data neglecting rotating inertia it is desirable to
introduce the fluid inertia correction from Equation II-3.5. In addition if
the inertia distribution for the ncn-fluid portion of the structure is known
the effect of rotating inertia can be introduced. In any case where rotating
inertia is neglected it is necessary to introduce the rotary inertia of all
gimballed engines since the derivation of the dynamic equation assumes this
inertia to be present. The inertia corrections aire not system parameters
which affect tne dynamics of the system but should be considered correction
factors introduced to correct the bending data. The mass moment of inertia
of the system is

I= )& (x® + y2 + rP)anm II-3.11

expressed in terms of the coordinates along the 1i- 3 axes. In the

previous derivation (reference 1) the inertia corrections were added to the
Vva. 1@ of I introduced into the equations. However, for the present derivation
it is assumed that the value of I inputed has already been corrected for

fluid inertia and the self inertia of the beam elements.
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II-3.5 NOTATION

Input data pertaining to the engines, slosh masses, bending

modes, and inertia corrections are designated by the following notatio. :

GIMBALLED SLOSHING BENDING FIXED INERTIA
ENGINES MASSES MODES  ENGINES CORRECTIONS

Numbering 1 thru P lthru R 1tk uT 1thru F 1 thruk
General

Subscript e J ' f k
Specific

Subscript P r t - -
Attach point Xe xhJ (xhi=0) X ¢ X1
Thrust TGe - -- TFf -
Deflection Se p‘j bi - -

The subscript h used for the attach points indicates that the
coordinate is measured along the UEA and not the i axis. The specific
subscripts p, r, t have peen introduced sirce general expressions contain
summations of e, j, and i and must be differentiated with respect to specific
engines, slosh masse: and benuing modes. For example, the general expression

for kinetic energy contains the term P}E % LR 6:¢ Therefore the general
e=1
expression for the pth engine equations will contain the term

P
d a l .2 o .
dat ( Z; meae) =1 8p # mese

. @ P
e) .
) P
The subscripts p, r, and t will appear in the pth engine egquation,
the rth sioshing equation, and the tth berding equation.

The motion of the mass element dm with respect to the 1 - J axes
is the sum of the rigid body motion due to motion of the UEA, and the elastic
deflection, due tc motion with respect to the UEA. The rigid body motion of
the UEA is a function of the engine angles Se and the sloshing deflections b

and also the bending coordinate b, when inertis corrections are applied to Ehe

i
bending modes. The bending deflections are only & function of bi' Therefore,
the motion of each element of mass can be defined in terms of the P values of
Se, the R values of pJ and the T values of bi' The total number of generalized

coordinates N is then
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N=P+ R+ T I1-3..2

These N generaiized coordinates, Qn’ are then defined as follows:
the first P coordinates are the cngine derlections, Be in radians, for the
P gimballed engines in the order of input, the next R coordinates are the
sloshing mass deflections p. in feet, for tne R slosa masses in tne order
or input: the last T coordi;ates are the input vending mode coordinates,

bi’ in feet for tha T input oending modes in the order of input.

( Q ) 517\

% = <Py -
{Qn}.___ N x1 - < {DJ} > = < 9 2 ? ‘J> > 1I 3-13

Column matrix Q°+R PR
AT \ J
- r b
{bl} [QP+R£4 .l
Y - = "
) < . l ﬁbl>

\ \Q'N J \QTfj

la . s anaiysis the braces{ }will be used as a symvol denoting
a cotumn macraix and the suosctipt T will be used to dencte a transposed
matrix, therefore{.}r is a row matrix composed of the elements o: the { }
coiunn matrix.

is unity
th

The resulting motion with respect to the 1 - Jj axes shen by
and all other generalized coordinates are zerc has pecome known as the i
input bending mode, Likewise the resulting motion when se is unity and
all other coordinates are zero is defined as the eth input engine mode,
and the resultant motion when ‘% is unity and all other coordinates are
zero is defined as the Jth inpuf slosh mode. These so called input modes
or non-orthogonal modes are not true modes of the system. However, for a

linear system superposition is velid and the output modes are a linear




8414 -6046-TUO0O
Page 37

comoination of these modes. These input mode. are numtered from L thru N

in the same order as their corresponding generalized coordinate. The motion
of the missile with respect to the T - J axes can then be defined by N
dynamic equations in N generaiized coordinates. This motion is a linear
combination of N so called input modes. The subscripts m and n will ve used
to designate the mth and nt'h of these coordinstes, equations and modes.
Where possiole n will oe used for the coordinates and m for these equations

and input modes.

It will be noted that with the definition of Xni = 0, there is an
attach point associated with each input mode and each gener.lized coordinate.

Therefore, an attach point can oe defined for each input mode or coordinate

( f x, \
: 7 {X, }
X ne
L'p
(

P+i
{xm} = Nx1 = i {. >

Column matrix . = {xhj}

‘XP+R

IT-,. .
(xP+R+
(v L -0}
: {Xhi }
va /
Likewise for each fixed engine and each inertia correction
N
x } = Fx1 « {x II-3.15
{ Ff Column matrix nf}
{x } = Kx1 = {x } II-3.i6
Ik Column matrix k

The orly input bending data required in the dynamic eqﬁations of the
system are the deflection and bending slope at each of the attach points.
Therefore, the required bending data can be defined by & system of subscripts
where the first subscript denotes the attach station and the second sub-

script the mode or cocrdinate causing the deflection. For example

3] E
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S
H

. th ¥
pending slope at e engine attach point due to ith pending mode.

bending slope at jth slosh attach point due to ith bending mode.

p
]

o

= bending slope at f fixed engine due io0 ith oending mode.

>.J
=
s
(S

I

th
= bending slope a% k inertia correction due to ith oending mode.

>_/
=
=
[
!

The same subscripts are used in connection with the deflection @.
However, in each case the slopes and deflections must ve taken fcr the

correct beam branch at each attach point. By further defining
/lee’ Aed’ /\Je’ /\‘j,j’ /\ii’ lie’ /Xij’ /\Ffe’ /\Ixe’ Alkj ’\Ff,j,

and the corresponding deflections all equal to zero, general symbols
for the bending slopes and deflections can be defined as

t
)~mn = pending slope at m h attach point due to nth mode

Arn

¢mn = deflection at m*™ attach poiat due to ' mode

bending slope at nth attach point due to mth mode

¢ = deflection at n'® attach point due to n'® mode

o th th
;Lan = bending slope at f ~ fixed engine attach point due to n  mode

o

y th
= deflection at £ n fixed engine attach point due to n  mode

¢an
. ; th | . th
/lIkn = bending slope at k inertia correction due to n =~ mode

@1y, = deflections at k®® inertia correction due to n®" mode

II-4 MOTION WITH RESPECT TO i - J AXES

In Section II-2 the dynamic equations were derived in terms of the
x, y and|J/ coordinates of each element of mass with respect to the i- 3 '
axes. In section II-3 a missile configuration wi, developed for nich the
motion with respect to the 1-3 axes can be deecribed by N generalized co-
ordinates Qn' The motion of the missile with respect to the i- J axes will
be developed in this section. The developm.nt is based upon first order

linearization.
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, II-4.1  DISPLACEMFNT

Tne displacement oi' the missile conliguration witn rospect to the

1 - J axes is saown in Figure II-k...

-
T
dJ

A

e
FIGURE II-k4.1
The « and y displacements oi the origin on the UEA are defined
e { as X and v and tne rotatlion or the UEA as w. The elastic displacements

#itit respect tu the VKA are u zmd(/,f detined by equ.itions 1I-3.6. The
gliwwadied ciagiae dinpaas 2oenbs o w2 taden tor posibive rotation qiln
respect to the + 5 aais, 8losalng disprtacements are defined positive
upward, wsnica ls opposite tu tne derinition used in reference 1. This
catnge as mwade in order Lnat a siosh motion in phase with rigid body motion

would be in the same direction as the rigid body motion.

Coordinates of a Point on Beam —_—

EEEY

X, = xo + X, cosw - u sinw
Yo =V + X sinv + u cosw II-4.1 1
‘(Z;b =w + SL/

Coordirates of the _ith Slosh Mass Attach Point

T mni e e B

Xy = X, + X, cosv - u; slav - p, ain(l//fw) = X,; - py 8in (VIJ'N) II-b.2 —

N Yy= Vot X, sinv + u, cOEw + Py cos(wd-w) = Yoy + py cos (wa-e-w)

YJ =W +y/J _

h
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Coordinates of the kth Inertia Correction Attach Point

Xk Xo + th cCosw - uk s1nw ka

=V + xhk sinw + uk cosw ybk r

ka =Y Y -

Coordinates of a Point on eth Engine

Yx

{ ___~UEA
Ybe \/ /,,\/__.,-—-—/
FIGURE II-4.2
5, 8, :__.
Xp = Koo+ ZZe sin =~ sin (w +\P% + = )
II-hoh

3] 133
- £ -
Yg = Ypp * Zze sin > cos (w VA > )

=W+ + &
yfe e
/e is the bending rotation or the beam at the gimbal of the eth engine.
The angle required is the rotation of the rigid engine as a result of .
elLastic deformutior of the beam. The use of A for this angle asgumes
that the engine rotation is due to bending deflections cnly. If the, —
engine actuator supporting structure is such that engine rotation resuits
from shear deflection in addition to bending deflection, a small errcr

will be iniroduced which may be corrected by modification of the input
bending data.

5

The value of %, RV be detemined from the fact that the origin
of1 - 5 axes remains . ¢~ . «nter of gravity.

P
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dm + Z f x, ém + '\: dm = O
L % r 3 < f *g

J e
substituting from II-4.1, II-4.2 and II-4.3

&xd j; zedm=m6e/Ge

m,, = Dass of eth engine

f('Ge = distance from gimbal to c.g. of et engine
5 8
1 1 Z e e
x = M?[mj Py sin (yjj + v)] i~ amGe[Ge sin > sin(w ﬂ//e > )

The Aisplacement of the origin of the UEA in the d‘rection of the 1
axes is the sum of second order terms and is therefore neglected in lineari-
i zation of the system and

i

x, = 0 II-4.5

The value of v may also be determined from the fa t that the
orig. . of 1 - J axes remains at the center ¢f gravity.

J' ydi = 0
- CT™

f ybdm-o- ZJdem-c-ZIyEdmaO

® Jd JJ e ‘e ’

again substituting for Yp ¥ 3 arnd Vg

wm L -

m ) &
V.-¥ -ﬁ-pj cos(%+w)+ gz GeMGe sin -;—cos (w+we+—%-)

i
i
i
i
4
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assuming small angles

m [
V= = E Z Ge
g Myt e
i
Leth=- m
v - Boe £ ge
e M
vi=0

thenv:ZvB + Xv + Zv b
= ee JJPJ 7 14

{de 03+ {3z o3+ fo B

' ’*{{:: 3:3 }]l PR

<
[}

{vi I {b
v«rhex%;n$= - _ {ve}

Column matrix

"
u<
g’

vhere ve,v L é.nd v, are constants for each input mode or coordinate.
For the linear system the coordinates given by equations II-4.1 thru
II-4.4 become

Coordinates of a Point on Bzam

» ="

Yy=V+xu+u

Y/b=w+w

I1I-4.6

II-4.7

II-4.8

II-4.9
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Coordinates of the j°" Slosh Mass Attach Point

*5 = Mg

y:j=v+thw+n.1J+p:j=xb'j+p'j

22 ¢
Coordinates of the kth Inertia Corrections Attach Points

= xhk =X

Yy =V E XV u =y

W =v +l//Ik Pk
Coordinates of a poin<t on 1;.he et'h Engine

g = %pe T Ze

yE=v+wa+uE-z868=zybe-ze6e
/ =
‘{e W +sué +_8e

Coordinate of Attach Point of £'° Fixed Engine

*re = %t
ny=v+ fo'i'l'uF‘f.—.yof
\i(Ffzw‘l's”Ff

Equations II-4.9 thru II-4.13 show thai X coordinave along the

i axis is equal to the X, coordinate along the UEA for all input
parameters. Therefore the ~olumn matrix defined by equatior II-3.14
also represents the x coordinate along 1 axis for each attach point.
Also since X, at any point is a constant and not a function of time,

all of the mass elements of the missile have no motion in the direction

of the 1 axis and all motion is in the direction of the J axis. The
value of w can Ye found from the fact that the angular momentum about
the c.g. due to motion with respect to i- 3 axes is zero.

II-4.10

II-4.11

II-4.12

I1-4.13

3 J e (MK e R rde b R aa ma e

V4
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Mxy = O for linear system
- (j'x-iy)dm+f (v + )am+zj % 5 dm+ VAL (fj.+w) (II-b.14)

Substituting for x, y, x and y
Mxy = w[fTM (x% + r%)am + § AIk] + fTM (ax + rZL][) dm + % m, 5Jx,j
- [ 2 2 .
+ Ee:se l.j;(ze +r )dm-xe !Gemce] +szIky/k
since ]m (x2 + rz) e + };AII =1
[TM (ﬁx + rzl/'/)dm =V

f (zz + rz)dm = Ice = mass moment of inertia of eth engine about
e gimbal

M xy = vl + %:xj meJ + % [Ic,e - x«e'!G«a-m(':e] B + %Alkl//k
since7,7xy = 0 for a linear system

-xe[GemGe. me

. AI.
G'JI pJ-ZkISUk

v I e

v Z IGe
Sl/k = Zif\lkl t.’1

& =§1Ge - :e'{GemGe 8 - §511‘L ';J ) zi[")i Aik /\Iki] {)i 17-k.15
Define v_ = - [IG“' :Iie «’Ge'“ce]
Vo= - 5%1- : II-h.16
Ar,
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then
W= gwe5e+zjwj Py + Ziwibi

definingw.—.oforbe:pj=bi=0

W= g"e8e+zjwj ‘?J+ gwibi

V= {féT {5; + {wJIIT{pJ} + {'1}1‘ {b‘}

{4 (8
[{93} {"m} T {QIS

W= {w 5
e b4

wt = Nx1 = {w;
{“} | {",,}

column matrix
4

e
{

where wm is a constant

II-h.2  KINETIC ENERGY WITH RESPECT T0 1 - j AXES

T =1 translation) + « rotation
v = Ty )+ 1 )

8414 -6046 -TUO0O
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II1-bL.17

II-4.18

o o)+ & [ G2 5D an 1 [ (2 + s L 7 [ (s

|
. e “e
Ny (rot) = —:zl—-j; rz(y'/+ \‘v)zdm + %— §j; rz(sZ/Jﬂ‘r)adm + %— gLrZ(Sbe*hé)adm

+ 3=
2

. X 0
C 37
y.j = be + pJ
FATIORGHY b PGSO 55 £ 1 4 N S i e e

% AIk(SZ/k + w‘:)z

e ot A L T e

e RVDURdCs TBLOAL. Gors Ern 4
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XE =0
Vg = ¥uz - %P
XE = xe - Ze
Ug = Y 'l/'feze
Substituting

21 (trans.):w'rzyl-t-ﬁaj xzdm+j WCam + 2&[ xa dm
e ™ ™ - ™

T €2 -~ f. o
+,5mj(pj+2 P [v+xjw+uj])

.2 2 . M * o e 2
+§ Se Lzedm- 2v6e mGe[Ge' zaewxe]GemGe-i—aawjeze dn

-251.11:11 +25. zadm
e e GCe " Ge el//eee

21 (rot)=£ 2 fam + 2w | rz‘dm+ﬁaf rfam + Zf rz[za%arzshsz] am
o M lf ™ l// ™ e’e

+zkv AIk[l;/i * 2 @+ ‘.’2]

adding
1 .2 1 .2 15,2 1 2 -[. ..
= —— -1 —_— — Av+ x w4+
L “+z§mi+zdmjpa"%m3“ 3 J]
+ 2

1 . ®, M ) Y
é"glr;e Bs * g 5, 1o x gemce) +W, Ioe el ge U “‘celce"]
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WoL@ L Lz, dviz 2s, g2, el 52+_;)fﬂ,2
M ~ 2 2 M Zli ZJJ zeMeszIk
I - I L] ? T
-gbe[M—wew+vv]-%pj[ﬁ-ij+vjv] _ybi[nwiw+vv]
z IGe . Z
+ ) val- AR I1-4.1
s e |TH Y ee|” & e [ J J] 9
From equation II-2.22, dynamic equation associated with each of the
generalized coordinates Qn is the Lag.ange Equation for motion with
respect to the I - 1 axes
T v F
s R i R
74 )&, %W qu n
The second term is zero for a linear system therefore the Lagrange
equation divided by the total system mass becomes
t v F P
2 4 (M)+£ b_L.,l 2D _ ‘m II-4.20
M dt 2 Qm M 3Qm M )Qm M
Equation II-4.20 represents a series of N dynamic equations one for
each Q . In matrix form II-L.20 becomes
T \'} F P 1
1a 2l J2 21l J1 2'p\ )tm II-k.21
& 2, B 5Q "oy )" (
The first column matrix represents the inertia for:es associated with
the Qm coordinates. Where Om equals 8 + the inertia force associated
with the p engine is
I
14 ¥ . w I
M at (3 ) = Z&e ﬁ"’e"p"""’ - o ﬁva +vva
5p e J J
T Zop
ibi TR AAA 21:1 W /\pi'v ¢ II-4.22

f&mw P,

- A

_——
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The inertia force associated with the rtn sloshing coordinate pr is

14 3'lxx _ o P B oo |I
M dt ()’ ) = Ve Pr T o« 5e M Ye'rt Ve'r| Z P ijw + vjvr
Cr e J J
.o ‘—I

- Zi b, [ﬁ WV o+ VY J Z b, {vr ri] I1-4.23
The inertia force associated with the t*h bending coordinate bt is

ld—(&l)—ﬁ-z:é I v s - Y% I v +vwv

Moa& 3 Tt e M "t T Ve't - P 1% Vit T Vit

A e Jod
- I . IGe
bllM ¥i¥e * Yy "t] L% {-M—/{et " Ve et
§ ,5j v, By + Zibi (‘L“k A /\Ikt II-4.2k

Equations II-4.22, II-4.23, and II-k.24 can be written as

14 'y -1 g Ig
M & (35 { Sp - {M wpw + Vv vn} T{le+ {—EBAPH
P

by ) ve . v
bld%f ( é ) = {BrnS Q‘ng = - {LId wr+wn+vrv25 T{Qr} “Vr {drn} T {Qn}

14 'y ) e v - Ge
M3t ()ﬁ ) ={Btn}m Qn}"bt {M"t" * "t"nS Tg n)§ * éaeli At Vefer
t
- ZB v¢ + Z AIk
J J gt 31 T/llkt/\lkn Tg:

Lge
Defining B, vhere Be = » BJ = -VJ,‘ Bt = 1.0

Toe

Cm where C e

1
=
(™
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B'rx ) o
wenfi & 52 - [fa)

and in LaPlace notation

1 3
ik 520 [ fy
where [B]is an N x N square matrix P%MJ

[

m= rov

n = column
B B(mn) - |3 c g
Bim = Bp 8(m,n) - M Yo'nt Vm'nl* cm’{mn + n/\mn * Vo'mn

A\ A:[k )
L; M 'Alkm ‘Ikn

v ¢nm +
The B matrix is the dynamic coupling matrix where Man gives the
generalized force along Qm resulting from unit acceleration of Qn
which is equal to the generalized force along Qn reaulting from unit

acceleration ol Qm' Therefo~e,

Bn = Bum

-

and [BJ must be a synmetric matrix.

II-L.3  INTERNAL, POTENTIAL ENERGY

In considaring the power balance of the system, rate of
energy irput equals rate of energy absorbed, the energy of the engine
actuators must be taken into accownt. When the act?ator moment, MBe
is in the same directiorn as the actuator velocity, aae the wcrk vate

or power M é is positive and the actuator acts as an external force

de

increasing the system energy. However, when the directions are opposite

in sign the work rate or power is negative and the actuator acts as a
damper decreasing the energy of the system. Sinse the actuator can
introduce erergy and absorb energy it also appes.'s &s a spring storing

potential energy. Although each approach will produce the same dynamic

equations, the energy of the actuator will t2 introduced as potential
energy in this analysis.

II-4.25

1I1-4,.26
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‘//,,,ethactuator axes
/

- Missile
Body
ethe ine engine
gimbal
FIGURE II-4.3
ae = Torsional spring constant between etn engine and its sactuator
in pound-feet per radian.
M5e = Actuator monent of the eth actuator equal to reaction torque
th .
from the e engine.
Mge = Kae (sqe - &)
1 1 2
vIel= 3 Mge(Bye - 8e) = 3 Kae (8, - 8,)
For a given engine angle, Se, the nagnitude of 8ae determines the
potential energy stored in the engine spring Kae'
It is also assumed that due to fluid lines etc. there 18 a
torsional spring, Kne’ between the eth engine and the missile body.
The energy. stored in this spring is
1 2
VIe, ) Khe 6e
2
The total internal potential energy stored by the engine springs,
due to toth engine deflection and actuator deflection is
_ Py 2 1 2 -k
Vie = Z; {2 Kae(%ae b ae) 2 Kie Se] 1I-%.27

The iutal internal potential energy stored by the engines, slosh
springs, and elastic deformation is

1 2 1 2
VI'VIe+§§kdpJ +§§k1bi
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ol

The second. term of equation II-%.21 then becomes:

For the pth engine

For the rth glosh mass

2=

For the tth bending mode

Defining N x 1 column matrices
[ A
_ Kae + Kne%
e M
2
J = - Vrmr} $
f - of}
A, = W
i
\ i
K
ae
{ke =M }
&

\ /

[
[ ] ']
w2 O
N

{Amg %m} and {aan} such that

2 1
gKne 8, + 3 §meJpJ+E

1I-k4.29

II-4.30

II-4.31

II-4.32

II-4.33
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¢ N
dal
5a2

{Sang=< 5;P L

0
0
0
“ O ’
then
1 V1 )
L Tm - {Qn} k] {6&15
where
N,
A= Ama( m,n)
k o= km%(m, n)

The A matrix is the static coupling matrix where MAm gives
the generalized force alcng Qm resulting from unit deflection of Qn’
which is equsal to the generalized force along Q‘n resulting from unit
deflection of Qe Therefore [A] must be symmetric, however the system

is statically uncoupled and
Amn=Anm=Owhenn;4m

hence [A] is a diagonal matrix.

II-4.4 DISSIPATION FUNCTION

The dissipation function F, appearing in the third term of
equation II-4.21 is defined as one half of the rate at which energy
is dissipated in the system. It is e3sumed that all damping forces
reswit from bencéing, slosh, and engine velocities such *iat

1 2 1 e2 1 -2
By =3 gnae 5 + 3 ZJ DsJ§J +3 Zinbi b
where DGe = eng’'2e damping in pound feet per radian

Ds j = glosh damping in pounds per feet per second

Dbj. = bending damping ia pound per feet per second.

II-4.34

II-4.35

II-+.36

I1-4.37

e
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but

where C j is the damping ratio associated with the } slosh mass
and C i- is the damping ra.ic associated with the i tending . ode

then

-« 2 .2
}e:”ce Pl e N @y B II-k.38

L3

Il
N

Since the engine damping is usually given as torque per deflection
rate es found from tests, the engine damping will be left as DGe'
It should be noted that wJ is pot the frequency of the ,jth slosh
spring and mass when attached to the missile body but is the frequency
when the spring mass is attached to a fixed point. 3 equal to unity
does not represent critical damping for the missile system when the
Jth sloshing mode only is present but represents critical damping

for the Jth tank when rigidiy held fixed. Likewise oy is not the

frequency of the input bendiag mode when inertia corrections have
been made.

The third term of equation II-4.21 then becomes for pth engine

F
= ._i [ II"ho39

i
M é P

QJ! N

For the rf'h slosh mass

F
1 2°p .
¥ : = - zvrmr,ér P II-4.%0
th
For the t = bending mode
F .
1 3p :
W 23 v(t Pt

i
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Defining a N x 1 column matrix {Dm} such thet
\
( 5 Dse }
e M
.= = 2V, .
3 3% 3

. 2w, }
3 14 1

1]

=]
|

T ~AA A
=
[l

-- {% :: - s [D]{QOB TI-k. bz

wnere
D =D & ;
= m,n
mn m ( A

The [D1 matrix is the damping matrix where MD gives the generalized
force along Qm resulting from unit velocity of Qn which is equal to
the generalized force along Qn resulting from unit velocity Qm
Therefore, [BJ must be symmetric. However, for the coordinate system
used [D] is a disgonal matrix.

From equations I1-4.25, II-4,35 and II-4.42 equation h4.21

car. be written, in La Place transform notation as
P

B]{Qn3+ [A] %ﬂ} +8 [D]{QKS = [k] gsang + (— II-k.43

11-4.5 INPUT FREQUENCIES

The undamped and undriven motion that results when a single
generalized coordinate Qm is given a magnitude of unity and all other
generalized coordinates are made zero, has been defined as an input mode.
Since the system is linear the damped driven modee represented by
equation TI-4.43 will be linear combinations of these input modes.

For studying the frequency shift uf the system, it is necessa.y to know'
the natural frequencies of these 1nput modes. For a single coordinate

undamped and undriven mode, the [D] k and Fu matrices become zero
and the [B]and [A]ma.trices are 1 x 1 matrices Equation II-4,U42 becomes
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anQ\n"AQO‘

then

but

II-b. bk

R P %SI; N

k km
The slosh mass, mJ’ has an associated sloshing frequency of a)J calcu~
latod by the sloshing program. This frequency is equal to the square root
of —'L and is the natural frequency of the spring mass system when attached

J
to a stationary body. In the slosh input mode the spring mass is attached to

a moving missile body and the input natural frequency as given by equation
II-4.44 will be higher than the square root of EJ_ . Likewise the engine

m
input frequency calculated from equation II-k4.4l4 will be higher *han
+ K
- the square root of T 2€ . In the case of the input bending modes
Ge

the input frequency is equal to the inputed modal frequeacy unless
inertia corrections have been made., The adaition ofAI's will produce
higher input bending frequencies.
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II-5  EXTERNAL FORCES

The external forces are assumed tc result from the thrust of
the gimbalied ergines, TGe’ the thrust of the fixed engines, TFf’
and the aerodynamic forcee Pa' The external forces will be expressed
by components along the i- J axes in the form

P=IP +JP
x y

i
'(o
FIGURE II-5.1 ey
eg
The external forces due to the gimbalied engine e are
P = Tg, COB (w +y/e + se)z'aTGe
Pye = Tg, sin (w +l//e + ae)'r'\‘iTGe (w +$Ue + be)
= X II'Sol
pe e
Y =V4+XW+ U
pe e e
The external forces due to the fixed engine f are
P = Tpp COB (w -0-)’[/1“3.):2.@1‘,f
ny = Tp, 8in (w +}7ny)zTFf (w +l/Ff)
*or = *Fe II-5.2

L T
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The aerodynamic forces are obtained from the pressure
distribution on the surface of the missile body. The net aero-
dynamic force on an element of the missile dxh in length, measured
along the UEA, is found by integrating the pressure over the ex-
ternal surface of that element. This net force is resolved into
components dPN normal to the UEA and dPD along the UEA. These forces
are defined by

dPy - aCy dx q S .
dP,=dD+aC, dxqS

vwhere the axial or drag forces are measured positive aft and

Q= (05 + W) = angle of attack of the UEA
q = dynamic pressure
S = reference area

cNi distrituted non-dimensional force coefficient
CAx’ distributed non-dimensional force ccafficient

dD = drag force independent of angle of attack

Defining

then

The distributed normal and axial force coefficients sz and %zx are

functions of X and are the force per unit length per radiian of angle
of attack.

U e o




P T ]

8l414 -L406k4 -TUO0O
Page 58

For the purpose of this analysis, it is assumed that axial
force is not a function of the angle of attack (Aax = 0) and

d.PDzd.D

P=f dp = D
P Jom

where D is the drag force in pounds and is considered a constant at
a given time nf flight.

It is further assumed that the normal force distribution is
not a function of elastic deformation and is independent of the local
bending slope.

The external aero forces due to drag are then

P

D = " D cosw-D
PyD = » I sin wou-Dw
A
pr =V +1pw

where Xp is the xh coordinate of the center of pressure defined below.,

The external aerc forces due to normal force are then
d'PxN} - d.PN sin w0

dPyN= dPN cos W =y d'PN

X

pN"ﬁ:
Yon V4 XW+U

The total normal force PN is then

P, = P, = & N d&x=a N
Nf,mN fmax a

I1-5.3

1I-5.4
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_z* where Na is the total normal force coefficient

Tiking moments of the aero forces about the origin on the UEA
aM, = x aPy
M, = dp,, = N _ dx =1 a/ P
AT oy *n % jm *h ox o
where / P is the location of the center of pressure

S ax
P N fm % N

Then for the aerocdynamic forces

P

x _ _ D
M ~ M
Do N e
M M M
j/— Pya P='[TMdPN’ﬁ1-Dw1p-(Naa-Dw)/p
P p = ~D(v +/pw)

II-5.1 FORCING FUNCTION FOR AXIAL ACCELERATION EQUATION

The axial acceleration equatioa II-2.24 requires the frrcing
1
function W ; Px

T T
1 Ge Ff D
T, -D
1 T
M %Pﬁ “w =P
where T, = T. + Z T, = total thrust
T § Ge T Ff

II‘S. 5

| S
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II-5.2 FORCING FUNCTION FOR NORMAL ACCELERATION EQUATION

The forcing function associated with normal acceleration equation
II-2.25 is = 2 P
M p 7

T
1 Z Ff
= P.—.X (w+,+6)+z——-(w+/ ) + a - ==
M5y £ M 5[ e =M Ure M ¥
N T T
1 x Ge Ff Ge
= = =2 2= b ==
M%Py M“*wﬁx*ggu)‘ei* - Apei| Pt LW S
C T
Ge Ff
Define E W Aei* §T Fei| = %
L -
r T T N
Ge Ff
or ETAen+ Ef:'_M_’lan =%
: J
aln is a constant for each bending mode and is zero when n not
equal to i.
Then
17 Y Ton
i ;Py-—Ma+ {'nﬁx'*aln*' T . {Qn} II-5.6
1Vp =2q+ (a Q I1-5.7
M P 7 M T 1n
where
lan 8
ayn = wan ety II-5.
TG
where Mn is zero for all modes except engine modes

IX-5.3 FORCING FUNCTION FOR MOMENT EQUATION

The forcing function for the moment equation II-2.21 is the net
moment of the external forces about the system center of gravity,

g[Pyxp T By p]

gi:Pyxp - nyp] = g[Pyxp] . 21;[? xyp] | II-5.9
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The total external moment will be found in two parts, the moment due to y

corporuents end the moment aue to x components of the forces.
p YP e

Y Px = Y Toe (w+¥/e+ se) x, + };’Tﬁ (w +,71/Ff) + (Naa - Dw)[p

dividing by total mass M

N/ T, o/
%ZPPyxp=-§—2a+w ZM x+z-%‘f "_'ﬁn"'
e f
iy T T
+ Ge z Ff
};g'ﬁ'xe’\ei“f MxAFfi i+ze e De
T T D
Define g—g—e 2y + Zf __%2 Xp = —ﬁ:e = BT = constant I1-5.10
. . -
Ge Ff
gT X Aet * F W *eAres| =%
.~ T T -
Ge Ff
or g—ﬁ- Xe Aen * ?T xf"\I"i’n = %n

- is a constant for each bending mode and is zero when n not ecual
to i

th
en N 1)

1 ___a -
4 g PX, = —-JM a+ {5'1' VO } {Qn} 1I-5.11
for the x components the mom-~t is

Zl’y Z'I‘ (v+xw+u)+ ET (v +x
f

fw+u) .,\--r,{w)

dividing by M

T T
1 Ge Ff
BLBSp =By e hy s LT SE A+ Lo e

i

ol




e

BN IOV A PR

¥ ot

8L14 -6046-TU000
Page 62
v e Ty
o4 T .ue —_ =
Deizne L:- TR L 9 pea| = %
e f N
-
T T ]
Ge Ff
or Ee: M S?’en + §T¢an =Q3 1I-5.12
oz3n is a constant for each bending mode and is z=7v0 when n not equal
to 1.
Therefore,-- -~ =
1 z Py {B v+ Bpv, t asn} T %“B 11-5.13

From equation II-5.9, 11-5.11, and II-5.13 the total external moment is

T
(n
LR, - By A a+M{ x - BV, + O a3:} T{Qn}
dividing by I

: T
i - - 2P Mg un - - -
g PR - Bl s 7T %7 T {_M X - Bn t % °‘3n} T {Q‘n} 11-5.14

NCZPE — '[‘;‘._5‘1"
I " ta - ’
Let M ,Gn i

3 (= X, = ByVn * %o ~ a3n) =u 11-5.16

: 51; [Pyxp - ]= b+ { {qn} 1I-5.17

17-5.h FORCING FUNCTION FOR m'" MODAL BQUATION

The foreing function associated with the mth generalized co-
ordinate is given by equetion II-2.22 as

m }:.z_é’fn.*_fxa_ﬁ_
MY, ¥ oY
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Since xpe’ xp P and .-;pa as given by equations II-5.1, II-5.2,
and II-5.4, are all constants

;:m
for ali coordinates and ail driving forces result from ccmponents of force

in the y direction. Therefore,

P
P P .
—3: g-'x‘-e- 2—-(v+xew+u)+};-"——L(""‘XH"*%)

- 2 ?
%W’ +/pw)+%[m [Naxdx.s-a;(v+xhv+u)]

P P P
: = g {le (vm+xe "m+¢em)+ § —Mﬁ_(vm+xmwm+¢m)
R

N
Dw / a a a
- % (vm+pwm)+vmua-rvmip N a+Mj pmNaxdx
™

3 P P P P
m__ - Yy X a e P28
M‘Vmgu oL N tH ¢mNaxdx+):M¢em+zM¢Fm
P ™ e b e
) 1I-5.18

Z --1- is the sum of the forces in the y direction divided by M and is
P
given by equation II-5.7. z —L xp is the external mowent due to the

Yy components divided by M und is given by equation II-5.11. Letting
the last two terms of equation II-5.18 equal X,
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Tefining N = ! ¢ N dx
aDm ™ o ax
P N N T
_'n - i aDm ry Gn
1 - N ( a s wm) U+ =T+ {vmayn + Bp¥ v+ V@, + W — xng{q%; Xm
1I-5.19
where
Fye v ye
= Z M ¢em oy ¢Ffin
e £
TGe ( TF‘f
km- ZM v+ +8e)¢em+ZT(w+y’Ff)¢F1
: Y
T T T
- Ge _Ff _Gn
Xm-va3m+ 21: § M'\e1¢em+$—; M’\Ff1¢F'fm bi+ M ¢nm Qn
“Ge Tep 1
Define ZT/\en ¢em + g—M— /\an ¢FfmJ = ahmp 11-5.20
e

ahmn is a constant for each combination of m and n and is zero unless
both m and n represent bending modes.
then

Xp = {wn C3n * Fypp * ?_;}‘_D ¢em} T {Qn}

then from I11-5.19

P N N T
i Qa aDm Gn
—H " ( Vo t ]pwm) a+ M a + {vmayn + ﬁTwm"n + wma2n + wm o J\:n+wu a3m
ra,  + Zon f II-5.21
bmn M "nm(T {Qn ’
I J4a+ [P II-5.22
M)" )’mf *? [ ] Qh :
vhere Nann
J = L (v +f w)+ II-5.23
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TGn l1‘Gn
Pm=vmayn+aTwmwn+wma2n+wm -M_xn+"na3m+a‘mn+—u_ ¢mn
I1-5.2k
II-6 DYNAMIC BEQUATIONS g GENERALIZED COORDINATES

Combining the results of sections II-2, IiI-k, and II-5, the dynamic
equations representing the motion of the displaced or perturbed missile can be

vritten in terms of generalized cocrdinsates.

11-6.1 AXTAL. ACCELERATION EQUATION

The axial acceleration elong the nominal flight path and along the i
axes are given by equations 1I-2.19 and II-2.2h as

%

L ] L] - P P
- = X £
ch(o + o:o)sin(e + ao) +V, ccs(0 + ao) = cos © ): %+ 8in @ ZP 5

& P
- gcos v
a_ = -V (é+(.1)81na +\.I cos O ,Z Px - cos @ g cos
X cg o ("] cg () M g r

P
For smal) angles and dropping non-linear terms these accelerations become

e -

= ST .
Qﬂ ch T g cos 1

P
S X
ax-ch=);T-gcosr

from equation II-5.5

Q= 8, = ch =B, - & cos v = a constant I11-6.1

Therefore for the linear system under consideration tihe acceleration along
the nominal fiight path is equal to the acceleration along the 1 axis which

is a constant.

11-6.2 NORMAL, ACCELERATION EQUATION

The normal accelerations perpendicular to the nominal flight path
and perpendicular to the 1 axis are given by equations II-2.20 and 1I-2.25
as
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. . . . . -Ijz- Px
Q= —ch(e + ao)cos(e + ao) - ch sin(@ + a,) = cos @ 21; &~ - sin OgT
0 + o v v Iy
8, = -V:g(e + ao) cos a_ - vcg sin q_ = L - sin@ gcos v
For small angles and dropping non-linear terms, where ch is a constant,
these accelerations become
. . . Z By T Px
QL=-VCS(9+(1°)-ch(9+ao)= M-g“‘ M
P P
1] - - Pl-
ay:-vcg(_o-rao) -cha°= g 5 -9gecos v
from II-5.5 and II-5.6
r
— =8
P M x
y‘ P N
L Yy e
P M=% PPy 7%
L - [ ] L 2 Na
Q= V(0 +a) -V (0+a)=—H—a-® +{éyn} T {Qn} I1-6.2
.. . N . ,
= -V va) - = =—a- -6.
a.y = cg(e N ch @, v C @ g cos v+ {ayn}T ({Qni 11-6.3
These ecuations show that the acceleiations normal to the nominal
flight peth and normal to the i axis are not equal in the linear
system but
-Q V= Q 6.k
8, QL+9ch Q +ta @ 1I-6

In addition eqration II-6.2 shows that the velocity of the system
center of gravity normal to the nominal flight path is given by

.

QL = -ch (o + ao) 11-6.5
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By equations II-6.2 and II-6.3 the normal accelerations cen be expressed in
terms of either ao or & and the remaining coordinates, where a is the angle
of attack of the UEA and ao is the angle of attack of the i axis, therefore

ax=Qq +v=0a + an} T {Qn} 11-6.6

Since a is the more convenient variable, ao is replaced by (a-w) in
equations II-6.2 and II-6.3., In addition \'rcg is replaced by the constaut
ax = 6x -~ g cos yv. Then in terms of the LaPlace operator, &, these

equations become

QL=-(V s+a)(0+a)+ (V, &St %)} {Qn}-_-—-a-es +{Y'§ {Q"

1I-6.7

N
= - - = Z -
8, = chs e (chs + ax)a + (chs + ax){wn T {Qg H ¢ -9gcosy

; { yn} {an 11-6.6

Using either equation II-6.7 or II-6.8 the dynamic equation in terms of the
variable @ is

N
(v.s + —‘:i-+ax)a+(vcss-gcosr)9+{aynf(V s+a)w} {Qn}

cg
11-6.9

Since it is convenient to know the normal acceleration in the system, it is
desirable to retain either Q’L or ay and convert either equation II-6.7 or
11-6.8 into two equations retaining o as a dependent variabie. In the
previous analysis of reference 1, ay the z:cceleration a.loné the :1' axis was
used., However, in this present analysis Q’L’ the acceleration normal to the

nominal trajectory, will be retained. Equation II-6.7 then becomes

Q.—.-(v 28 (0+) 4 (v, a+a){an{Ql; II-6.10

Q= %‘— a-B0+ {ay&T {Qn} II-6.11
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Equation II-6.10 is the so called normal force equation and II-6.11 is

the normal acceleration equation. The normal force equation can ther be
written as

.o

(Vogs + 8 da+ @ + (Vs +8)0-s {NW}T {Q%- @%T%‘_‘% 0 11-6.12

where N =V w
vn cg n

N a w
an X n

The normal accelerution equation can be written as
Na . .
-2 a+q +B,0- {ayng'l’ {Qn§ =0 11-6.13

11-6.3 MOMENT EQUATION

The moment equation II-2.721 is

5%' (Ié) = g[Pny - nyPJ

For small angles and a linear system
- 1
0= -1 ;[Py)% - nyP]

From equation II-5.17

RNRYANY

in terms of the LaPlace cperator the moment equation becomes
2
u + 8% + {;n);T {Qn} =0 I1-6.1k

II-6.4 MODAI. EQUATIONS

From equation II-4,43 the nmodal equations can be written as

§2 [B]{Q&-» [A]{Qn}-l- s [7] {QJS - [x] {am;} + {fﬁ-}
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From equation II-5.21

e} - ()«

Finelly the modal zquations become

s? (5] {QD)S vs [D]{Q{& + [4] {Qng =[x] {5&& + {:nga + [P]{Qn} 11-6.15

11-6.5 SUMMARY OF EQUATLIONS

The dynamic equations derived for a missile cunfiguration con-
sidering flexible body, sloshing, and engine dynasmics are:

Axial Acceleration equation II-6.1

o

ch =a =B -gcosy II1-6.16

Normal Force Equation II-6.12
(ch 8 + ax) o+ Q + (chs + ax) e -8 {;‘vn}T {Qng- %‘ax}!l‘ {Qn} =0 II-6.17

Normal Acceleration Equation II-6.13

N

- _ﬁ_a . QL 8o - glyn} v {Qn} =0 II1-6.18
Normal Equation II-6.1k
b + s%0 + @n} o {Qng =0 11-6.19

Modal Equations II-6.15

K [B] {qﬂ% s [D]{Qng + [4] {Qn}- [k]{san&«u [Jm] a4+ [P] {qn} 11-6.20

where n has values from 1 thru N

As pointed out in section II-4, the system has N + 3 degrees of
freedom. The motion of the system is described by the above N + 4 equations
in the N + U variables a, a o o, Q‘L and N values of Qn' However, the variable




R aidintas S e )

R R )

vap

841k -6046 -TUOOO
Page 70

ve

« can be expreased as & linear combination of QL’ © and the Qn's by

equation II-6.18, therefore, 0 is a dependent variable and is retained along
with equation II-6.18 as a matter of convenience as iiscussed in section
II-6.2. The N + 3 coordinates which define the motion of the lineary systemn
are then §cg"aL’ %) aqg the-N values of Qn‘ For the linear system the degree
of freedom defined by Q, = ch = a_ = constant, equation 11-6.16, 3is un-
coupled from the other coordinates and consists of a constant acceleration
along the QH axis. Si?ce the force along the QH axes is constant, it is
independent of QH and QH and ther? are no spring or damping forces along

the axes and the value of Qﬂ.fnd .at time t are arbitrary. The constant,
ax,.has been substituted for QH or ch and ch has been arbitrarily assigned
to QH in the normal force equation II-6.17, therefore, the axial translational
mode of motion has been eliwinated from the system of equations. Flimination
of equation II-6.16 reduces the system to N + 2 degrees of freedom equivalent
to defining tine missiie motion with respect to a set of axis translating
&long the QH axes with velocity ch- The L inextial axes is tken coincident

with the P axes and the coordinate QH is zero.

II-7 MISSILE DYNAMICS IN GENERALIZED COORDINATES

The dynamic equations given in section II-6 together with an engine
hydraulic equations and an instrument equation, are the data required for the
missile dynamics Llock of figure I-2 . The missile dyneamics represents the
transfer function from delta command, Sc, to the gyro outputs, QP and OR'

Figure II-7.1 contains & block diagram showing the effective flow of the data

in the dynamic equationé. It is assumed that in a system containing P gimbelled
engines, the command signels for each engine or group of engines may be different.
The engine hydraulic equations which give the engine actuator position sae
corresponding to a given delta command, can be of any form but will usually

appear in the form

(Kﬁs + Ka) 8, + (Kss + xﬂ) Bpe * B = © II1-7.1

requiring a feedback of engine positions 5e.
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The engine actuator position, and the angle of attack feedpback drive the

modal equations I1I-6.15 producing the modai coordinates Qn. These coordinates

in turn drive the normal acceleration and moment equations together with
the equation

V= Z; *n Qn
to produce the rigid body rotation of the : - 3 axes, O, the rigid body
rotatioa of the UEA with respect to the I « J axes, w, and the angle of
attack a@. In addition the engine deflactions are fedback to the engine
hydraulic equations and the bending coordinates are combinel with the
bending data to produce the bending slopes at each gyro location. These

bending slopes are combined with the rigid body rotations to produce the
gyro signals.

GP = 0 - W -ygb
ORI=Q-W°$L/RI
Sprr =9 -V 'yVRII

R = %r1 * R ®m1z

It is assumed that one position and two rate gyros are used and the

net rate signal is a ratioed sum of the two rate gyros.

That portion of the system matrix representing missile dynamics is

shown in Figure II-7.2. The first row of the matrix represents the normal
force equation I1-6.12. The second row is the normal acceleration equation
I11-6.13, and the third row is che moment equation II-6.14, The next N rows

are the N modal equations II-5.15. The system shown is assumed to have three

gimballed engines, therefore, columns 11, 12, and 13 represent the three
engine actuatnr positions. Row 11 and columr 14 intorduce the rigid body
rotation with respect to the 1 - J axes were

o {ude 4 |

II-7.2
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The next four rcws &ad columns introduce the instrument equations II-7.2
vkile the last three rows represent the engine hydraulic equations II-7.1l.
For the system shown it is assumed ths%t a single command signal, column 19
controir the actuators of the first two gimballed engines and the third
engiae is restrained LY making its zommand signal zero.

The input to the wissile dynamics is Sc of column 19 while the
output is the gyro signals of columns 15 and 18. The system mstrix is
completed by adding rows and columns representing the autopilot whici operates
on the gyro signals to produce the command signal. '

The matrix representing missile dynamics, as shown in Figure II-7.2,
will have a number of columns one greater than the number of rows. Adding
an additional row to the matrix by piacing unity in the delta command column,
Sc , will make the input Sc zero and the output arbitrary. The values of 8
vhich make the determinant of the resulting square matrix zero represcnt
the necural frequencies of the missile dynamic system, and are the cpen
loop poles of the system due to missile dynurics. The eigenvector assoclated
with each pole or natural frequency represeats the mode shape for that pole

or frequency expressed as a linear combination of the inp 't modes.
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iTi-1 COMBINED MODE HEPRESENTATION

In Section II the dynamic equations were derived ror a missile
configuration consideriag flexible oody, slosning, and engine dynamics.

These eguations of motion are:

Hormal Forc : Equation

(chs + ax)a + EL + (chs + al)G -8 (an} . {én} - {Nan} . {Qn} =0

Normal Accelerat.on Equation

Aa [ R]
- 'ﬁ_-'a + QL + BXQ - {ayn} v {Qn} =0

Moment Equation

sz + 329 + {ﬁnj . {Qn} =0

Modui Equations

e? [B]{Qn} +s [D] (in + [A]{Qﬂ} = [k] {sm} +{Im} a' + [P](Qn}

#here n has values rrom 1 through N.

ITI-1.1

I11-1.2

III-1.3

ITI-3.4

As noted in Section II-6.5, the system has M+2 degrees of freedom

with respect to a translating set >f inertial axes. The motion of the sya-
tem is descrined by the above N+3 equations in the variables Q, O, QL and
the N values of Qh, where Qk and Equation III-1.2 are a dependent variable

and equation. The variables @, and the Qn's are generalized coordinates

and @ is a function of 9, the Qn's and the rate of change of the generalized

coordinate QL'

3; ) (wrj T (Qn}

The gereralized coc:dinate QL is the displacement of the missile
center of graivty normal to tne ncminal flight path. The generalized co-
ordinate @ ix the rotatioa of the body axes, 1-J, and the N coordinates,
Qn define the wotion of the missile with respect to the T-F axes, The
displacenent of the center of gravity along the nominal flight path has

a=-]0+

III-1.5
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been eliminsted from the equations by assuming the reference axes toO be
translating along the flight patl: at a velocity ch.

For each of the N ccordinates Qn there is a so-called input mde
as defined in Section II-4. Each input mode is the amplitude of motion
vesulting when the corresponding coordinate Qn has an amplitude of unity
and all other coordiunates are zero. The input modes when Qn represents an
engine deflection, a sloshing deflection, and a bending deflection are shown
in Figure III-1. The input engine modes are normalized to an engine de-
flection of 1 radian and the motion conmsists of a rigid body translation,
Vs and a rigid body rotation, ¥ of the UEA. The input slosh modes are
normalized to a slosh mass deflection of 1 foot and the motion consists of
& rigid body translation, VJ’ and a rigid body rotation, "ﬁ’ of the UEA.

The input bending modes are normalized to a mass equal to the total mass of
the missile for motion with respect to the UEA. The rigid body translation
v, is zero and the rigicd body rotation, wi, exists only when inertia correc-
tions nave been made. Since a bending coordinate, bi’ of unity represents
motion equivalent to a normal mode, bi is measured at the point where the
deflection is unity. The modal deflections and slopes are in ft. per ft.
and radiens per ft. since bi is in feet.

As noted in Section II-4 the modes defined as input modes are not
true modes of the sgystem since each can only exist if all other coordinates
are held fixed, However, since the sys*em is linear, superposition is valid
and any free or driven motion of the system is a linear combination of the
motions associated with the input modes and may be defined in terms of nor-
mal coordinates which are a linear combination of the imput coordincies Qn.
It was also noted in Section II-7 that the modes of oscillation asso:iated
with the open loop natural frequencies or poles are a linear combination of
the input modes. Likewise, the modes of oscillation associated with the
clczed loop natural frequencies or roots of the complete autopilot counfigura-
tion are a linear combination of the input modes. Therefore, the motion
associated with the closed loop roots is a linear co—Hination ¢f the motion
associated with the open loop poles. From the above it can ve ceen that
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the modes for tue closed loop roots, or the final motion of the sysiem can
be expressed in terms of a linear combination of any set of modes and their
coordinates which are in turn a linear combination of the input modes. These
new nodes will be referred to in this analysis as "combined modes.” It may
be seen that the modes corresponding to the open loop poles of the system
are in effect combined modes each with a normal coordinate which is & linear
combinaticu or the input coordinates Q‘n The final motion of the system
corresponding tc the closed loop roots may then be expressed in terms of a
linear combination of these normal coordinates.

Combined mode representation in connection with missile dynamic
equations consists of defining & set of orthogonal modes in terms of a linear
combination of the so-called input modes defined in Section II-4 and shown
in Figure III-1l. Replacing the input modes by this set of orthogonel conbined
modes produces & set of missile dynamic equaitions in a form which is independ-

. ent of missile configuration with regard to propellant tank and engine arrange-

ment. By using this representation the final stability equations retain the
same form regardless of the missile system configuration. Also, as noted in
Section II-3.2, the highest input bending frequency should be above the high-
est engine or slosb mode frequency in order to reduce truncation errors due
to the use of a finite number of bending modes. Thie criterian usually re-
sults in the use of from three to five bend!ng modes. The use of additional
modes increases the size of the system matrix and requires additonal computer
time to obtain the solutions. With the use of combined mode representation,
a larger number of bending modes may be used in the calculation of the com-
bined modes ard the dropping of the higher frequency orthogonal combined modes
from the gyster equations will tend to reduce truncation errors.

III-2 SELECTION OF COMBINED MODES

In Secticn III-1 the principle of superposition in a linear system
was used to show that the motion of the missile may be described in *erms of
a linear combination of a set of combined modes and the dynamic equations can
be expfessed in terms of their normal coordinates which ir turn are a linear
combination of the coordinates Q‘n’ Let the normal coordinstes of the combined




F T N . L R T

[T W

PR

8414 -6046-TUOOO
Page 79

modes be represeni.ed by q,, @ equals 1 tarough N. Combined mode representation
consists of making a linear coordinate transformation from the generalized co-
ordinates Qn to the normal coordinates q, and defining the motion in terms of
the combined modes instead of the input modes. Considering the modal equation
represented by III-1.4,

(e + o BIRY * BIG) = [ * (i o+ [7]far)

The left side of the equation is a function orf only the Qn's and
when equated to zero represents a eigenvalue problem, the solution of which
gives the natural frequencies and mode shapes for the system when the actuator
position, aerodynamic forces, and thrust forces are zerc. The right side of
the equation then represents the driving forces for these new combined modes.
The matrix [P]{Qh represents the spring forces resulting from engine thrust
and is also only a function of the Qn's. This term may be transferred to the
left side of the equation and the combined modes then become the undriven
damped modes with engine thrust forces present. Likewise, the aerodynamic
forces (ﬁm} a can be made functions of the Qh's only by using Equations III-1l.1,
I1I-1.2, and III-1.3 to express @ as a function of Qn's. Transferring this
term to the left side of the equation will result in combined modes for un-
driven, damped modes with engine thrust and aerodynamic forces present. The
only driving force remeining on the right side is [k] sa;bdne to engine
actuator positions. These mode shapes and frequencies require only the
addition of the ~engine hydraulic equation to yield the system open loop poles
and associated mode shapes. Calculation of the combined modes with the loop
opened in this manner would require a considerable expenditure of computer
time approaching that required tc obtain open loop poles. The use of combined
modes is only justified if the modes cen be obtained quickly wi. ' A small ex-
penditure of computer time. This criterian requires that the aerodynamic forces
J&& o and the thrust spring forces [P]{Q;b remain on the right side of Equa-
tion III-1.4 as driving forces. In addition, the damping forces represented
by s [D]ﬁ%ﬁnwke the coustants which express the combined modes as a linear .
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combination of the input modes, complex numbers which greatly increases the
required computer time. The more suitable form of Equation III-1.4 for com-
bined mode calculations is then

2 [5] {QHE + [A]{Qn\ = -5 .[D]{QDX+ [x] {55113 + (rms a+ [P]{Qn} I1I-2.1

In this form the homogeneous equation

e [B] {Qn} + [a] {Qn] =0 I11I-2.2

may be solved by the AX = ,\Bx computer subroutine (Raference 6), This
svbroutine is extremely fast but requires that the [A] and [B] matrix be
symmetric and that the [B] matrix be positive and definite. The solution of
Equation III-2.2 will give the undamped natural frequencies of the system when
the actuator positions, the aerodynamic forces, and the thrust forces are all
zero, The [P} matrix representing the thrust spring forces cannot be placed
on the left side of the equation since it is not a symmetric matrix. In the
previous analvsis, Reference 1, the symmetric components of the [P}matrix

were placed on the left side and included in the combined modes; h;wever; for
this analysis all of the effects of the thrust forces are considered driving

forces.

III-3 COORDINATE TRANSFORMATION

Solution of Equation III-2.2 will result in N values of s2 where
82 = -g?z and N associated.eigenvectors {ena} . Where:

Qe

{oe

Then ena is the amount of Qn present in the ath combined mode. The eigenvectors
{ena}obtained from the sul.routine are normelized such that

{em} . [B]{ena} =l III-3.1

natural frequency of the ath combined mode

a column matrix of the values of {éhlobtained from III-2.2
2 2
when s~ = -{?a .
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and since the modes are orthogonal
(ena} T [B]{enb} =0 III-3.2

Let

3 r h
[EJ = Kenlj (enz}. . . '(ena}‘ . . °{enN}J = [enaJ 1I11-3.3
when [E} is a N x N square matrix, 'the columns of which are the eigenvectors
found in the solution of Equation III-2.2. This [E] matrix is defined as the
normalized modal matrix of Equation III-2.2 From ITI-3.1, III-3.2, and
ITI-3.3

(=] o [2][5] - [1) ‘

E| o [BMEJ - [IJ III-3.
Since the values of B and A in Equation III-2.2 are the masses and

spring constants divided by the total mass of the system, Equations III-3.1

and III-3.4 are equivalent to normalizing the combined modes to a mass equal
to the total mass. Since {ena is the solution of III-2.2 when s2 = -Qz

(4] {en&} 2 [B]{ena} from wnich [4][E] = (=] [EJ[QZJ I11-3.5

where[(fj is & diagonal matrix of the values oni » Premultiplying

I1I-3.5 by [E]T

-[I';]T [][#] =[Qz] | 1I1-3.6

Since €a is the amount of Qn present in the ath combined mcde and q, is the
amount of the ath combined mode present,

Q‘n = Z: e qQ = {nth row of [E] }{qa}

t.en

{af =[] {a} T
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Substituting tnis coordinate transiormation into Equation III-1.h4

2 {BW[E {qa) . [“‘][?]{qa} . -8 fD { @}+ & {6 } + {m} o [PME]J%}

premultiplying by [EJT

K [EJT [B][Ej{quj + [E]T [A][E] {1&} = -s E T ]{q% + E] k] {5&1}
NERUPNERFIEN
(1 ) @ ‘{qgf ” b [0 + (el (96 (el i o

5 +Q§]{q:; « o (el [)ale) + [l [ ) + [o) 3

* [EJT [P] [E] {‘153 I11-3.8

where

2 2 2 2
[s + {?a] is a diagonal matrix = (s +§)a) [I]

1 = Ig] = - -
Let [nql - [E]r [D]L,.J = [Dab] = damping matrix in III-3.9
normal coordinates where Dab is 1/M times the deamping force associated
with the q, coordinate due to unit velocity of the q, coordinate.
et [k} = (2], (] = [Ka.b] III-3.10
vwhere k is 1/M times the driving force for the ath combined mode due to

unit deflection of the b th engine actuator,

Let {Jcé - (2], {Jm} III-3.11

where Jca is 1/M times the driving force for the ath combined mode due
to a unit angle of attack.
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th
a

normal coordinate due to unit deflection of the b“'l normal coordinate.

Then the modal equation in normail coordinates hecomes

—~

'L [1] & +[Q2] vs o] 2] {qa} = [x] {%a% + {Jc}i] o

III-4 DYNAMIC EQUATIONS IN NORMAL COORDINATES

Substituting the coordinate transformation {Q;ﬁ = [E} {qa}) into the normal
{

force equation III-1.1

(Vo 5 + 8,)a yo + (Vog &+ 80 -5 %\rwa [¢] @BS - {N%T [E]{qa}

or

(ch 5 + ax)a +.é'L + (ch s + a.x)O -5 %ch;}T{qgs '@caa}T {qa} =0

where

{ch;k - (=], anﬁ
{Ncaa) (el {Naxfs

The normal acceleration equation III-1.2 becomes
N

-E‘-"-a+'q'_L+axo - {ayn}T [E]@a}=0

Na ve
"'M-"a"'Q‘L*'P’xO-{ayca}T @a} =0
where

@ye;) N [E]T {a‘yn}

The moment equation III-1l.3 becomes:

I1I-3.12

ITI-3.13

0

ITI-4.1
III-4.2
III-4.3
ITI-4.4

III""“. 5
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nf + s% + {pn}T [E] {qa} =0

M + s% + {uca\T @% =0 III-4.6

where

(“ca} - (g, {;‘n} ' III-h.7

the modal equation .s given by III-3.13.

III-5  COMBLMNED MODES

The combined modes selected in Section III-2 are defined by the
solutions to Equation III-2.2

s [g] {Qn} + [A]{Qn} =0

The resulting N values of’f2a and the corresponding N eigenvectors na
represent the N combined mode trequencies and mode shapes. The order of
nunbering the combined modes is arbitrary and is a functiop of the manner

in which the rootz of Equation III-2.2 are mumpered. Since the equation

is to be solved by means of the AX =;\Bx computer subroutine, it is con-
venient Lc order the roots and therefore the combined modes in.the order
which the computer subroutine finds the roots. This process is not arbitrary
since in a loosely coupled system the routine tends to find roots in an order
corresponding to the frequencies represented by the data along the main
diagonals of the A and B matrices. As a result, the first combined mode

will usually have a fraquency close to the first input engine frequency and
will contair the largest first engine esmplitude., Likewise, the second com-
bined mode will have a frequency close to and contain large second engine
amplitudes, et:. This correspondence between the input mcic frequencies and
the combined mode frequencies has resulted in a tendency to name the ~ombined
in the same order aes the input modes, first engine mode, first slosh mode,
second slosh mode, etc. However, it should be noted that this correspondence
of input and output frequencies may not hold for tightly coupled modes such as
two slosh or engine modes with input frequencies close together. In fact,

P, A i con e



T

I g, 3

AT I I e YA B SR e N+ e 7

el

o

8414 -6016-TUOCC
Page &5

a rerun of the program with slight changes in parameters may cause two such
modes to exchange position in the output. This process has no <ffect upcn
the equations or their solutions once the combired wodes are numbered but
does lead to some confusion if the combined modes are asscciated with a

corresponding input mode.

As noted in Section III-3, the eigenvector e is the solution
to Equation III-2.2 when s = -Qi . Therefore, e _ is the amount of
present in the ath combined mode, and letting{f),n} equal %na}defines

th :
the a  crnbined mode.

From Equation III-3.3 1

kelﬂ} %n;f %n;} R {en;g “ e e {enN}l

e
.
[E] = {e B
JT n2 7
&
T
{e’m} T
tn L _
the a = column of the modal matrix [E] gives the composition of the a

t
conbined mode in terms of the normalized input modes. Likewise, the a

.-

and

—

th
h

row of [E]T also gives the composition of the ath combined mode.

It was noted in Section II-3.2 that the deflections and slopes of
an input bending mode could be multiplied by -1 thereby defining a rew input
bending mode and shifting the phase of the finiel b { by 180 deg:ees. In
order to be consistent, a positive input bending mode was dzfined es that
phase of the mode which results in a positive deflectira at the aft end of
the missile. Likewise, the positive input engine and ziosh modes were de -
fined in Section III-i Figure III-1 as that phase of the motion resulting
from positive engine g£ad slosh deflections. Since €a is the amount of the
nt'h input mode presert in the ath combined mode, a value of €. o7 +.,7 for

th

example indicatesa that the mode shape or the a  ccubined mode contains .7
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times the aormal nth input mode. Defining the opposite phase of the input
mode would result in an € a of -.7 and the resulting combined mode would be
the same, Taerefore, it may be seen tnat the definition of a positive phase
for the input modes is not reguired in order to determine the combined modes
or to perfirg a stabpliliity analysis but has heen done in order to provide a
consistent basis uvpon which to compare the pahse relationship between the
input modes for different missiie configurations or for different times of
flight. It may alsc be seen that the phase of the ath combined mode and
therefore the phase of qarc?n be changed by 180 degrees if the ath column

hi
of [E} or the ath row of [EJ is multiplied by a factor of -1.0. It is then

desirable to define a positi$e phase of the combined modes or in effect a
positive phase of each Gg* Since the engine actuator positions represent
the external driving forces for the dynamic equations, and the first inputed
engine is usually the main control engine, the deflection of the first input
engine provides a cuavenient common reference for the combined modes. The
positive phase of each combined mode is then taken as that phase for which
the first engine deflection is positive. This phase relationship is
accomplished by multiplying the columns of the normalized modal matrix [Eﬂ
by plus or minus unity such that all of the elements of the first row of

the matrix are pogitive numbers. The aﬁh combined wode then represents

the motion with respect to the i-j axes when the normal coordinate q, is
equal to + 1.0,

Referring to Figure III-S5.1l

J

Figure III-5.1
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The defliection of the ath cc’)cmbineg mode at station § is
¢ = v + _Q_EQ_QQL w4+ u
c§ a ca 12 ca c:g a
th . R *
The total slcpe of the a  combined mode at station g is

1 [}
§ . =w _+u

cta ca cga
. th s .
The bending slope of the a  combined mode at station § is
=W +
/\c ~a ca lcfa
¢ e g
From Equation II-4.8
)
v = {ym}m 4én3
Vea =[{v } %na.
D
[£lz {a)
or {vcaB~ T {vm}
From Equetion II-4,18
W= {wm}T {Qng
Vea {wré {ena}
T
or {’C&S= [E]T {Wm}

from II-3.6
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-5.2, Egd III-5.3 become

¢ . { le—g- v+ @ 1 {em} III-5.14
{

it
LA ¢§ n}'r {em} 111-5.15
/\cé“a ={"m + /\A*n em} 11I-5.16
where m = n.

From Figure I1I-5.1 and the above equations it may be seen that
where the input bending modes are the natural frequeucies and mode shapes
fur the system with engines and sloshing masses locked to ths beam, the
combined modes are the natural frequencies and mod. shapes for the same
system with the engines and sloghing masses free and restrained by their
respective springs and inertia corrections ares applied to the beam.

The magnitude of the engine deflections and sloshing deflections
associated with each combined mode can be obtained from the modal matrix

[Eﬂ = [éna]since e o 16 a amplitude of the at? generalized coordinate

_in the aﬁh combined mode.

In combined mode reprecentation the motion of the system is
described in terms of the normel :ombined mode coordinates Qg However,
a feedback of engine deflections is required for the engine hydraulic
equations, therefore, each engine deflection must be expressed in terms of
the normal coordinates 9, From Equation III-3.7
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ey ={Aea},r {qas 1II-5.18

I11I-6 MISSILE DYNAMICS IN HORMAL COORDINATES

then

In Section II-2, the dynamic equations were derived for a system
of masses in terms of the translational motiorn of the system center of
gravity, the rotation of a set of i - j body axes, and the motion of the
masses with respect to the i- 3 body ases. The system of masses was
defined in terms of a missile configuration in section II-3, and the motion
with respect to the I - J axes was derived in section II-4 in terms of a
set of N generalized coordinates, Qh' The generalized coordinates used where
those for which the motion was statically uncoupled. Missile dvnamics in

terms of these generalized coordinates is presented in section "I-7.

The motion of the system with respect to the i- 3 axes has bcen
redefined in section IJI in terms of the normal modes of the undamped,
undriven system and the associate<¢ normal coordinates. The dynamic equatious
for the sysfem transformed into normal coordinates are given in section IJI-L,
These equations “ogether with an engine hydraulic equation and an instruuent
equation are thc data required for the missile dynamics block of Figure I - 2.
The missile dynamics represents the transfer function from delta command,

Sc, to the gyro outputs, OP and OR. Figure III-6.1 contains a block fiagram
showing the effective flow of the data in the dynamic equatiors in normal
coordinaces. It is assumed that in a system containing P gimballed engines,
the command signals for eackh engine or group of engines may be different.

The engine hydraulic equations will agein be of the form of equation II-7.1
requiring a feedback of engine positions 5e' The engine actuator pcsitions
together with tne sngle of attack feedback drive the modal equations III-3.13
producing the normal coordinates Qe These coordinates in turn drive the
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normal force, normal acceleration and moment equations to produce the rigid
body rotation of the i- 3 axes, ©, and the angie of attack a. In addition
the normal coordinates operate with equation III-5.18 to produce the engine
deflection to be fedback to the engine hydraulic equations and are combined
with the combined mode bending date to produce the bending slopes at each
gyro location. These bending slopes are combined with the rigid vody ro-
tations to produce the gyro signals. Since the rigid body rotation due to
motion with respect to the i- 5 axes, w, is included in the combined mode
slop2: this term does not appear in the instrument equations when in normal

coordinates. Equations II-7.2 then become

9P= e -WP

= © Yt
Opir= © “Wrr I11-6.1
e, = ©

R gt * ®g CRiI

That portion of the system matrix representing missile dynamics in
normal coordinates is shown in Figure III-6.2. The first row of the matrix
represents the normal force equation III-4.1. The second row is the normal
acceleration equation III-4,4, and the third row is the moment equation
I11-4.6. The next N rows are the N modal equations III-3.13. The system
shown is assumed to have three gimballed engines, therefore, columns 1., Iz
and 13 and rows 11, 12 and 13 represent the engine angles found from
equ.tion III-5.18 while columns 1k, 15 and 16 represent the three engine
actuators. The next four rows and columns introduce the instrument equa-
tions III-6,1 while the last three ro+s represent the engine hydraulic
equations II-7.1l. For the system shown it is assumed that a single command
signal, column 21, controls the actuators of the first two gimballed engines
and the third engine is restrained by meking its commend signal zero.

The input to the missile dynamics is 5c of column 21 while the
output is the gyro signals of columns 17 and 20. The system matrix is completed
by adding rows and columns representing the autopilot which operates on
the gyro signals to produce the command signal.



FIGURE III - 6.2 SYSTEM MATRIX IN NORMAL COORDINI
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The matrix representing missile dynamics, as shown in figure
111-6.2, will have a number of columns one greater than the number of
rows. Adding an additional row to the matrix by placing unity in the
delta command column, ac, will make the input 50 zero and the output
arbitrary. The values of s which make the determinate of the resulting
square matrix zero represent the netural frequencies of the missile
dynamic system, and are the open loop poles of the system due to missile
dynamics, the eigenvectors associated with each pole or natural frequencies
represents the mode shape for that pole or frequency expressed as & linear

combination of the combined modes.
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GLOSSARY

subscript denoting ath combined mode

coefficient used in combining rate gyro outputs
acceleration of c.g. slong I axis

acceleration of c.g.along J axis

subscript denoting bending

generalized tending coordiante for ith bending mode
subscript denoting combined mode data

subscript dencting eth gimballed engine

subscript denoting fth fixed engine

- acceleration of gravity

subscript referring to the UEA

subscript denoting ith bending mode .
rotating reference axis

subscript denoting Jth sloshing mass
rotating reference axis

subscript denoting kth inertia correction
fluid inertia correction factor

equivalent bending spring constant

slosh spring constant

spring matrix

distance from gimoal to center of gravity of eth gimballed engine
distance from c.g. to center of pressure
subscript denoting m?h generalized coordinate
total fluid mass in tank

equivalent slosh mass

subscript denoting nth generalized coordinate
subscript denoting pth gimballed engine
normal coordinate for ath combined mode
radius of gyration of element of mass dm
subscript denoting rth slosh mass

LaPiare operator

time

subscript denoting tth bending mode
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(Cont'd) GLOSSARY

< K 5 4

e
LY
(2]

?u"\_é_'"u

| =2 -
[~
Cs

Hkﬂu'ld"d"dtdg

9H

=t - 3- - T N
gg s BT

translational deflection of beam element at 5 due to elastic
deformation

total slope at X due to elastic deformation .

displacement of UEA along J axis

rotation of UEA in I-j plane

coordinate slong I axis

coordinate along J avis

coordinate on eth gimballed engine measured aft from gimbal
normalized spring matrix

normalized masu matrix

total aerodynamic drag

damping matrix

gimbal damping for o engine (ft-lbs per radian)

damping for Jth slosh mass (1lbs. per ft/sec.)

- damping J 1*" bending mode (1bs. per ft./sec.)

subscript denoting a point on & gimballed engine
number of fixed engines '
subscript denoting a £ixed engine

dissipation function

inertial axis

mass moment of inertis of system about its c.g.
mass moment of inertis of eth engine about its gimbal point
wmatrix representing serodynamic forces

number of inertia corrections

spring constant for eth engine

inertial axis

length of fluid tank

teotal mass of system

normalized mass of 1th bending mode

mass of eth gimballed engine

moment at gimbal for eth gimballed engine

number of degrees of freedom with respect to I-] axes
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(Cont'd) GLOSSARY e

N, - normal force coefficient (lbs per radian)

N, .- distributed normal force coefficient

- normal force due to nth coordiante as & result of the velocity
- normal force due to nth coordiante as a result of aerodynamics
- axis parallel to L axie but translating with c.g.

- number of gimballed engines

- external force vwhen used with subscript

- generalized coordinate when used with subscript

- axig parallel to H axis but translating with c.g.

- number of fluid tanks -
fluid tanl: radius

- number of bending modes

- thrust of et"h gimballed engina

- thrusi of fth fixed engine

- totel thru~t of all engines

- used as subscript to denote the traaspose 01 a matrix

earaegaehfuwwommmgzgz

< H
'

velocity of center of mass at time t

0
o0

- poteniial energy due to gravity
- internal potentisl energy

- angle of attack of UEA

- angle cf attack of I axis

- thrust constant 'I‘T -D

as

- angle between local verticel and nominal trajectory
= deflection of eth gimbelied engine

- position of sctueior on et‘h gluballed engine

- rototion of I-J axis in inertial space

- position gyro angle -—
- rate gyro angle

- engine angle of eth engine due to ath combined mode '
- pertebation of V

th®8
- frequency of a combined mode

.b :ngwo'do ogmocn R N N
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(Cont'd) GLOSSARY

Er La]- frequency matrix
A. - rotation of mass element dm with respect to the R axis
Y - rotation of .mss element dm with respect to the R axis
¥ - rotaticn of mass element dm with respect to the UEA
71 - mementum
T - Kinetic energy
AI - inertia correction
f’ -~ slosh amplitude in feet
& - damping ratio
¢ - modal deflection
@' - total modal slope
A -~ modal bending slope
@ - input modal frequenzy
Hy =~ rotational acceleration per unit angle of attack
u, =~ rotational acceleration per wunit (;1n
g -~ real part of root
UZA - undeformed eliastic axis
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